Abstract:3D Object Affordance Grounding aims to predict the functional regions on a 3D object and has laid the foundation for a wide range of applications in robotics. Recent advances tackle this problem via learning a mapping between 3D regions and a single human-object interaction image. However, the geometric structure of the 3D object and the object in the human-object interaction image are not always consistent, leading to poor generalization. To address this issue, we propose to learn generalizable invariant affordance knowledge from multiple human-object interaction images within the same affordance category. Specifically, we introduce the \textbf{M}ulti-\textbf{I}mage Guided Invariant-\textbf{F}eature-Aware 3D \textbf{A}ffordance \textbf{G}rounding (\textbf{MIFAG}) framework. It grounds 3D object affordance regions by identifying common interaction patterns across multiple human-object interaction images. First, the Invariant Affordance Knowledge Extraction Module (\textbf{IAM}) utilizes an iterative updating strategy to gradually extract aligned affordance knowledge from multiple images and integrate it into an affordance dictionary. Then, the Affordance Dictionary Adaptive Fusion Module (\textbf{ADM}) learns comprehensive point cloud representations that consider all affordance candidates in multiple images. Besides, the Multi-Image and Point Affordance (\textbf{MIPA}) benchmark is constructed and our method outperforms existing state-of-the-art methods on various experimental comparisons. Project page: \url{https://goxq.github.io/mifag}
Abstract:This paper aims to advance the progress of physical world interactive scene reconstruction by extending the interactive object reconstruction from single object level to complex scene level. To this end, we first construct one simulated and one real scene-level physical interaction dataset containing 28 scenes with multiple interactive objects per scene. Furthermore, to accurately model the interactive motions of multiple objects in complex scenes, we propose LiveScene, the first scene-level language-embedded interactive neural radiance field that efficiently reconstructs and controls multiple interactive objects in complex scenes. LiveScene introduces an efficient factorization that decomposes the interactive scene into multiple local deformable fields to separately reconstruct individual interactive objects, achieving the first accurate and independent control on multiple interactive objects in a complex scene. Moreover, we introduce an interaction-aware language embedding method that generates varying language embeddings to localize individual interactive objects under different interactive states, enabling arbitrary control of interactive objects using natural language. Finally, we evaluate LiveScene on the constructed datasets OminiSim and InterReal with various simulated and real-world complex scenes. Extensive experiment results demonstrate that the proposed approach achieves SOTA novel view synthesis and language grounding performance, surpassing existing methods by +9.89, +1.30, and +1.99 in PSNR on CoNeRF Synthetic, OminiSim #chanllenging, and InterReal #chanllenging datasets, and +65.12 of mIOU on OminiSim, respectively. Project page: \href{https://livescenes.github.io}{https://livescenes.github.io}.