Abstract:Open-vocabulary 3D scene understanding is indispensable for embodied agents. Recent works leverage pretrained vision-language models (VLMs) for object segmentation and project them to point clouds to build 3D maps. Despite progress, a point cloud is a set of unordered coordinates that requires substantial storage space and does not directly convey occupancy information or spatial relation, making existing methods inefficient for downstream tasks, e.g., path planning and complex text-based object retrieval. To address these issues, we propose Octree-Graph, a novel scene representation for open-vocabulary 3D scene understanding. Specifically, a Chronological Group-wise Segment Merging (CGSM) strategy and an Instance Feature Aggregation (IFA) algorithm are first designed to get 3D instances and corresponding semantic features. Subsequently, an adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape. Finally, the Octree-Graph is constructed where each adaptive-octree acts as a graph node, and edges describe the spatial relations among nodes. Extensive experiments on various tasks are conducted on several widely-used datasets, demonstrating the versatility and effectiveness of our method.
Abstract:Night-to-Day translation (Night2Day) aims to achieve day-like vision for nighttime scenes. However, processing night images with complex degradations remains a significant challenge under unpaired conditions. Previous methods that uniformly mitigate these degradations have proven inadequate in simultaneously restoring daytime domain information and preserving underlying semantics. In this paper, we propose \textbf{N2D3} (\textbf{N}ight-to-\textbf{D}ay via \textbf{D}egradation \textbf{D}isentanglement) to identify different degradation patterns in nighttime images. Specifically, our method comprises a degradation disentanglement module and a degradation-aware contrastive learning module. Firstly, we extract physical priors from a photometric model based on Kubelka-Munk theory. Then, guided by these physical priors, we design a disentanglement module to discriminate among different illumination degradation regions. Finally, we introduce the degradation-aware contrastive learning strategy to preserve semantic consistency across distinct degradation regions. Our method is evaluated on two public datasets, demonstrating a significant improvement in visual quality and considerable potential for benefiting downstream tasks.
Abstract:Reconstructing controllable Gaussian splats from monocular video is a challenging task due to its inherently insufficient constraints. Widely adopted approaches supervise complex interactions with additional masks and control signal annotations, limiting their real-world applications. In this paper, we propose an annotation guidance-free method, dubbed FreeGaussian, that mathematically derives dynamic Gaussian motion from optical flow and camera motion using novel dynamic Gaussian constraints. By establishing a connection between 2D flows and 3D Gaussian dynamic control, our method enables self-supervised optimization and continuity of dynamic Gaussian motions from flow priors. Furthermore, we introduce a 3D spherical vector controlling scheme, which represents the state with a 3D Gaussian trajectory, thereby eliminating the need for complex 1D control signal calculations and simplifying controllable Gaussian modeling. Quantitative and qualitative evaluations on extensive experiments demonstrate the state-of-the-art visual performance and control capability of our method. Project page: https://freegaussian.github.io.
Abstract:Diffusion-based Low-Light Image Enhancement (LLIE) has demonstrated significant success in improving the visibility of low-light images. However, the substantial computational burden introduced by the iterative sampling process remains a major concern. Current acceleration methods, whether training-based or training-free, often lead to significant performance degradation. As a result, to achieve an efficient student model with performance comparable to that of existing multi-step teacher model, it is usually necessary to retrain a more capable teacher model. This approach introduces inflexibility, as it requires additional training to enhance the teacher's performance. To address these challenges, we propose \textbf{Re}flectance-aware \textbf{D}iffusion with \textbf{Di}stilled \textbf{T}rajectory (\textbf{ReDDiT}), a step distillation framework specifically designed for LLIE. ReDDiT trains a student model to replicate the teacher's trajectory in fewer steps while also possessing the ability to surpass the teacher's performance. Specifically, we first introduce a trajectory decoder from the teacher model to provide guidance. Subsequently, a reflectance-aware trajectory refinement module is incorporated into the distillation process to enable more deterministic guidance from the teacher model. Our framework achieves comparable performance to previous diffusion-based methods with redundant steps in just 2 steps while establishing new state-of-the-art (SOTA) results with 8 or 4 steps. Comprehensive experimental evaluations on 10 benchmark datasets validate the effectiveness of our method, consistently outperforming existing SOTA methods.
Abstract:Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. It remains challenging due to the complex spatial relationships in outdoor aerial scenes. In this paper, we propose an end-to-end zero-shot framework for aerial VLN tasks, where the large language model (LLM) is introduced as our agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning ability of LLMs. This is achieved by extracting and projecting instruction-related semantic masks of landmarks into a top-down map that contains the location information of surrounding landmarks. Further, this map is transformed into a matrix representation with distance metrics as the text prompt to the LLM, for action prediction according to the instruction. Experiments conducted in real and simulation environments have successfully proved the effectiveness and robustness of our method, achieving 15.9% and 12.5% improvements (absolute) in Oracle Success Rate (OSR) on AerialVLN-S dataset.
Abstract:Collecting real-world manipulation trajectory data involving robotic arms is essential for developing general-purpose action policies in robotic manipulation, yet such data remains scarce. Existing methods face limitations such as high costs, labor intensity, hardware dependencies, and complex setup requirements involving SLAM algorithms. In this work, we introduce Fast-UMI, an interface-mediated manipulation system comprising two key components: a handheld device operated by humans for data collection and a robot-mounted device used during policy inference. Our approach employs a decoupled design compatible with a wide range of grippers while maintaining consistent observation perspectives, allowing models trained on handheld-collected data to be directly applied to real robots. By directly obtaining the end-effector pose using existing commercial hardware products, we eliminate the need for complex SLAM deployment and calibration, streamlining data processing. Fast-UMI provides supporting software tools for efficient robot learning data collection and conversion, facilitating rapid, plug-and-play functionality. This system offers an efficient and user-friendly tool for robotic learning data acquisition.
Abstract:Despite the impressive advancements made in recent low-light image enhancement techniques, the scarcity of paired data has emerged as a significant obstacle to further advancements. This work proposes a mean-teacher-based semi-supervised low-light enhancement (Semi-LLIE) framework that integrates the unpaired data into model training. The mean-teacher technique is a prominent semi-supervised learning method, successfully adopted for addressing high-level and low-level vision tasks. However, two primary issues hinder the naive mean-teacher method from attaining optimal performance in low-light image enhancement. Firstly, pixel-wise consistency loss is insufficient for transferring realistic illumination distribution from the teacher to the student model, which results in color cast in the enhanced images. Secondly, cutting-edge image enhancement approaches fail to effectively cooperate with the mean-teacher framework to restore detailed information in dark areas due to their tendency to overlook modeling structured information within local regions. To mitigate the above issues, we first introduce a semantic-aware contrastive loss to faithfully transfer the illumination distribution, contributing to enhancing images with natural colors. Then, we design a Mamba-based low-light image enhancement backbone to effectively enhance Mamba's local region pixel relationship representation ability with a multi-scale feature learning scheme, facilitating the generation of images with rich textural details. Further, we propose novel perceptive loss based on the large-scale vision-language Recognize Anything Model (RAM) to help generate enhanced images with richer textual details. The experimental results indicate that our Semi-LLIE surpasses existing methods in both quantitative and qualitative metrics.
Abstract:This paper presents AlignBot, a novel framework designed to optimize VLM-powered customized task planning for household robots by effectively aligning with user reminders. In domestic settings, aligning task planning with user reminders poses significant challenges due to the limited quantity, diversity, and multimodal nature of the reminders. To address these challenges, AlignBot employs a fine-tuned LLaVA-7B model, functioning as an adapter for GPT-4o. This adapter model internalizes diverse forms of user reminders-such as personalized preferences, corrective guidance, and contextual assistance-into structured instruction-formatted cues that prompt GPT-4o in generating customized task plans. Additionally, AlignBot integrates a dynamic retrieval mechanism that selects task-relevant historical successes as prompts for GPT-4o, further enhancing task planning accuracy. To validate the effectiveness of AlignBot, experiments are conducted in real-world household environments, which are constructed within the laboratory to replicate typical household settings. A multimodal dataset with over 1,500 entries derived from volunteer reminders is used for training and evaluation. The results demonstrate that AlignBot significantly improves customized task planning, outperforming existing LLM- and VLM-powered planners by interpreting and aligning with user reminders, achieving 86.8% success rate compared to the vanilla GPT-4o baseline at 21.6%, reflecting a 65% improvement and over four times greater effectiveness. Supplementary materials are available at: https://yding25.com/AlignBot/
Abstract:3D Object Affordance Grounding aims to predict the functional regions on a 3D object and has laid the foundation for a wide range of applications in robotics. Recent advances tackle this problem via learning a mapping between 3D regions and a single human-object interaction image. However, the geometric structure of the 3D object and the object in the human-object interaction image are not always consistent, leading to poor generalization. To address this issue, we propose to learn generalizable invariant affordance knowledge from multiple human-object interaction images within the same affordance category. Specifically, we introduce the \textbf{M}ulti-\textbf{I}mage Guided Invariant-\textbf{F}eature-Aware 3D \textbf{A}ffordance \textbf{G}rounding (\textbf{MIFAG}) framework. It grounds 3D object affordance regions by identifying common interaction patterns across multiple human-object interaction images. First, the Invariant Affordance Knowledge Extraction Module (\textbf{IAM}) utilizes an iterative updating strategy to gradually extract aligned affordance knowledge from multiple images and integrate it into an affordance dictionary. Then, the Affordance Dictionary Adaptive Fusion Module (\textbf{ADM}) learns comprehensive point cloud representations that consider all affordance candidates in multiple images. Besides, the Multi-Image and Point Affordance (\textbf{MIPA}) benchmark is constructed and our method outperforms existing state-of-the-art methods on various experimental comparisons. Project page: \url{https://goxq.github.io/mifag}
Abstract:3D perception ability is crucial for generalizable robotic manipulation. While recent foundation models have made significant strides in perception and decision-making with RGB-based input, their lack of 3D perception limits their effectiveness in fine-grained robotic manipulation tasks. To address these limitations, we propose a Depth Information Injection ($\bold{DI}^{\bold{2}}$) framework that leverages the RGB-Depth modality for policy fine-tuning, while relying solely on RGB images for robust and efficient deployment. Concretely, we introduce the Depth Completion Module (DCM) to extract the spatial prior knowledge related to depth information and generate virtual depth information from RGB inputs to aid policy deployment. Further, we propose the Depth-Aware Codebook (DAC) to eliminate noise and reduce the cumulative error from the depth prediction. In the inference phase, this framework employs RGB inputs and accurately predicted depth data to generate the manipulation action. We conduct experiments on simulated LIBERO environments and real-world scenarios, and the experiment results prove that our method could effectively enhance the pre-trained RGB-based policy with 3D perception ability for robotic manipulation. The website is released at https://gewu-lab.github.io/DepthHelps-IROS2024.