Abstract:OpenAI's recent introduction of Reinforcement Fine-Tuning (RFT) showcases the potential of reasoning foundation model and offers a new paradigm for fine-tuning beyond simple pattern imitation. This technical report presents \emph{OpenRFT}, our attempt to fine-tune generalist reasoning models for domain-specific tasks under the same settings as RFT. OpenRFT addresses two key challenges of lacking reasoning step data and the limited quantity of training samples, by leveraging the domain-specific samples in three ways: question augmentation, synthesizing reasoning-process data, and few-shot ICL. The evaluation is conducted on SciKnowEval, where OpenRFT achieves notable performance gains with only $100$ domain-specific samples for each task. More experimental results will be updated continuously in later versions. Source codes, datasets, and models are disclosed at: https://github.com/ADaM-BJTU/OpenRFT
Abstract:The technical report introduces O1-CODER, an attempt to replicate OpenAI's o1 model with a focus on coding tasks. It integrates reinforcement learning (RL) and Monte Carlo Tree Search (MCTS) to enhance the model's System-2 thinking capabilities. The framework includes training a Test Case Generator (TCG) for standardized code testing, using MCTS to generate code data with reasoning processes, and iteratively fine-tuning the policy model to initially produce pseudocode, followed by the generation of the full code. The report also addresses the opportunities and challenges in deploying o1-like models in real-world applications, suggesting transitioning to the System-2 paradigm and highlighting the imperative for environment state updates. Updated model progress and experimental results will be reported in subsequent versions. All source code, curated datasets, as well as the derived models will be disclosed at https://github.com/ADaM-BJTU/O1-CODER .
Abstract:Night-to-Day translation (Night2Day) aims to achieve day-like vision for nighttime scenes. However, processing night images with complex degradations remains a significant challenge under unpaired conditions. Previous methods that uniformly mitigate these degradations have proven inadequate in simultaneously restoring daytime domain information and preserving underlying semantics. In this paper, we propose \textbf{N2D3} (\textbf{N}ight-to-\textbf{D}ay via \textbf{D}egradation \textbf{D}isentanglement) to identify different degradation patterns in nighttime images. Specifically, our method comprises a degradation disentanglement module and a degradation-aware contrastive learning module. Firstly, we extract physical priors from a photometric model based on Kubelka-Munk theory. Then, guided by these physical priors, we design a disentanglement module to discriminate among different illumination degradation regions. Finally, we introduce the degradation-aware contrastive learning strategy to preserve semantic consistency across distinct degradation regions. Our method is evaluated on two public datasets, demonstrating a significant improvement in visual quality and considerable potential for benefiting downstream tasks.
Abstract:Diffusion-based Low-Light Image Enhancement (LLIE) has demonstrated significant success in improving the visibility of low-light images. However, the substantial computational burden introduced by the iterative sampling process remains a major concern. Current acceleration methods, whether training-based or training-free, often lead to significant performance degradation. As a result, to achieve an efficient student model with performance comparable to that of existing multi-step teacher model, it is usually necessary to retrain a more capable teacher model. This approach introduces inflexibility, as it requires additional training to enhance the teacher's performance. To address these challenges, we propose \textbf{Re}flectance-aware \textbf{D}iffusion with \textbf{Di}stilled \textbf{T}rajectory (\textbf{ReDDiT}), a step distillation framework specifically designed for LLIE. ReDDiT trains a student model to replicate the teacher's trajectory in fewer steps while also possessing the ability to surpass the teacher's performance. Specifically, we first introduce a trajectory decoder from the teacher model to provide guidance. Subsequently, a reflectance-aware trajectory refinement module is incorporated into the distillation process to enable more deterministic guidance from the teacher model. Our framework achieves comparable performance to previous diffusion-based methods with redundant steps in just 2 steps while establishing new state-of-the-art (SOTA) results with 8 or 4 steps. Comprehensive experimental evaluations on 10 benchmark datasets validate the effectiveness of our method, consistently outperforming existing SOTA methods.
Abstract:Large language models (LLMs), renowned for their impressive capabilities in various tasks, have significantly advanced artificial intelligence. Yet, these advancements have raised growing concerns about privacy and security implications. To address these issues and explain the risks inherent in these models, we have devised a three-tiered progressive framework tailored for evaluating privacy in language systems. This framework consists of progressively complex and in-depth privacy test tasks at each tier. Our primary objective is to comprehensively evaluate the sensitivity of large language models to private information, examining how effectively they discern, manage, and safeguard sensitive data in diverse scenarios. This systematic evaluation helps us understand the degree to which these models comply with privacy protection guidelines and the effectiveness of their inherent safeguards against privacy breaches. Our observations indicate that existing Chinese large language models universally show privacy protection shortcomings. It seems that at the moment this widespread issue is unavoidable and may pose corresponding privacy risks in applications based on these models.
Abstract:Previous multi-task dense prediction methods based on the Mixture of Experts (MoE) have received great performance but they neglect the importance of explicitly modeling the global relations among all tasks. In this paper, we present a novel decoder-focused method for multi-task dense prediction, called Mixture-of-Low-Rank-Experts (MLoRE). To model the global task relationships, MLoRE adds a generic convolution path to the original MoE structure, where each task feature can go through this path for explicit parameter sharing. Furthermore, to control the parameters and computational cost brought by the increase in the number of experts, we take inspiration from LoRA and propose to leverage the low-rank format of a vanilla convolution in the expert network. Since the low-rank experts have fewer parameters and can be dynamically parameterized into the generic convolution, the parameters and computational cost do not change much with the increase of experts. Benefiting from this design, we increase the number of experts and its reception field to enlarge the representation capacity, facilitating multiple dense tasks learning in a unified network. Extensive experiments on the PASCAL-Context and NYUD-v2 benchmarks show that our MLoRE achieves superior performance compared to previous state-of-the-art methods on all metrics. Our code is available at https://github.com/YuqiYang213/MLoRE.
Abstract:Multi-modal large language models (MLLMs) can understand image-language prompts and demonstrate impressive reasoning ability. In this paper, we extend MLLMs' output by empowering MLLMs with the segmentation ability. The extended MLLMs can both output language responses to the image-language prompts and segment the regions that the complex question or query in the language prompts focuses on. To this end, the existing work, LISA, enlarges the original word embeddings with an additional segment token and fine-tunes dialogue generation and query-focused segmentation together, where the feature of the segment token is used to prompt the segment-anything model. Although they achieve superior segmentation performance, we observe that the dialogue ability decreases by a large margin compared to the original MLLMs. To maintain the original MLLMs' dialogue ability, we propose a novel MLLMs framework, coined as LLaVASeg, which leverages a chain-of-thought prompting strategy to instruct the MLLMs to segment the target region queried by the user. The MLLMs are first prompted to reason about the simple description of the target region from the complicated user query, then extract the visual attributes of the target region according to the understanding of MLLMs to the image. These visual attributes, such as color and relative locations, are utilized to prompt the downstream segmentation model. Experiments show that the proposed method keeps the original dialogue ability and equips the MLLMs' model with strong reasoning segmentation ability. The code is available at https://github.com/YuqiYang213/LLaVASeg.
Abstract:In this paper, we present a simple but performant semi-supervised semantic segmentation approach, termed CorrMatch. Our goal is to mine more high-quality regions from the unlabeled images to leverage the unlabeled data more efficiently via consistency regularization. The key contributions of our CorrMatch are two novel and complementary strategies. First, we introduce an adaptive threshold updating strategy with a relaxed initialization to expand the high-quality regions. Furthermore, we propose to propagate high-confidence predictions through measuring the pairwise similarities between pixels. Despite its simplicity, we show that CorrMatch achieves great performance on popular semi-supervised semantic segmentation benchmarks. Taking the DeepLabV3+ framework with ResNet-101 backbone as our segmentation model, we receive a 76%+ mIoU score on the Pascal VOC 2012 segmentation benchmark with only 92 annotated images provided. We also achieve a consistent improvement over previous semi-supervised semantic segmentation models. Code will be made publicly available.
Abstract:In the field of few-shot learning (FSL), extensive research has focused on improving network structures and training strategies. However, the role of data processing modules has not been fully explored. Therefore, in this paper, we propose Meta-DM, a generalized data processing module for FSL problems based on diffusion models. Meta-DM is a simple yet effective module that can be easily integrated with existing FSL methods, leading to significant performance improvements in both supervised and unsupervised settings. We provide a theoretical analysis of Meta-DM and evaluate its performance on several algorithms. Our experiments show that combining Meta-DM with certain methods achieves state-of-the-art results.
Abstract:Weakly supervised semantic segmentation with weak labels is a long-lived ill-posed problem. Mainstream methods mainly focus on improving the quality of pseudo labels. In this report, we attempt to explore the potential of 'prompt to masks' from the powerful class-agnostic large segmentation model, segment-anything. Specifically, different weak labels are used as prompts to the segment-anything model, generating precise class masks. The class masks are utilized to generate pseudo labels to train the segmentation networks. We have conducted extensive experiments on PASCAL VOC 2012 dataset. Experiments demonstrate that segment-anything can serve as a good pseudo-label generator. The code will be made publicly available.