The University of Texas at Arlington
Abstract:In the graph-based semi-supervised learning, the Green-function method is a classical method that works by computing the Green's function in the graph space. However, when applied to large graphs, especially those sparse ones, this method performs unstably and unsatisfactorily. We make a detailed analysis on it and propose a novel method from the perspective of optimization. On fully connected graphs, the method is equivalent to the Green-function method and can be seen as another interpretation with physical meanings, while on non-fully connected graphs, it helps to explain why the Green-function method causes a mess on large sparse graphs. To solve this dilemma, we propose a workable approach to improve our proposed method. Unlike the original method, our improved method can also apply two accelerating techniques, Gaussian Elimination, and Anchored Graphs to become more efficient on large graphs. Finally, the extensive experiments prove our conclusions and the efficiency, accuracy, and stability of our improved Green's function method.
Abstract:We propose the DPSM method, a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space. Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process, thereby making it suitable for a graph space. In DPSM, nodes are partitioned into small clusters based on propagated density. The partitioning technique has been proved to be sound and complete. We then extend the concept of spectral clustering from individual nodes to these small clusters, while introducing the CluCut measure to guide cluster merging. This measure is modified in various ways to account for cluster properties, thus provides guidance on when to terminate the merging process. Various experiments have validated the effectiveness of DOSM and the accuracy of these conclusions.
Abstract:The self-attention mechanism in Transformer architecture, invariant to sequence order, necessitates positional embeddings to encode temporal order in time series prediction. We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences, particularly when employing longer lookback windows. To address this, we introduce an innovative approach that combines Pyramid RNN embeddings(PRE) for univariate time series with the Transformer's capability to model multivariate dependencies. PRE, utilizing pyramidal one-dimensional convolutional layers, constructs multiscale convolutional features that preserve temporal order. Additionally, RNNs, layered atop these features, learn multiscale time series representations sensitive to sequence order. This integration into Transformer models with attention mechanisms results in significant performance enhancements. We present the PRformer, a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets. This performance highlights the effectiveness of our approach in leveraging longer lookback windows and underscores the critical role of robust temporal representations in maximizing Transformer's potential for prediction tasks. Code is available at this repository: \url{https://github.com/usualheart/PRformer}.
Abstract:Clustering is a fundamental task in machine learning and data science, and similarity graph-based clustering is an important approach within this domain. Doubly stochastic symmetric similarity graphs provide numerous benefits for clustering problems and downstream tasks, yet learning such graphs remains a significant challenge. Marcus theorem states that a strictly positive symmetric matrix can be transformed into a doubly stochastic symmetric matrix by diagonal matrices. However, in clustering, learning sparse matrices is crucial for computational efficiency. We extend Marcus theorem by proposing the Marcus mapping, which indicates that certain sparse matrices can also be transformed into doubly stochastic symmetric matrices via diagonal matrices. Additionally, we introduce rank constraints into the clustering problem and propose the Doubly Stochastic Adaptive Neighbors Clustering algorithm based on the Marcus Mapping (ANCMM). This ensures that the learned graph naturally divides into the desired number of clusters. We validate the effectiveness of our algorithm through extensive comparisons with state-of-the-art algorithms. Finally, we explore the relationship between the Marcus mapping and optimal transport. We prove that the Marcus mapping solves a specific type of optimal transport problem and demonstrate that solving this problem through Marcus mapping is more efficient than directly applying optimal transport methods.
Abstract:Ensemble learning is a method that leverages weak learners to produce a strong learner. However, obtaining a large number of base learners requires substantial time and computational resources. Therefore, it is meaningful to study how to achieve the performance typically obtained with many base learners using only a few. We argue that to achieve this, it is essential to enhance both classification performance and generalization ability during the ensemble process. To increase model accuracy, each weak base learner needs to be more efficiently integrated. It is observed that different base learners exhibit varying levels of accuracy in predicting different classes. To capitalize on this, we introduce confidence tensors $\tilde{\mathbf{\Theta}}$ and $\tilde{\mathbf{\Theta}}_{rst}$ signifies that the $t$-th base classifier assigns the sample to class $r$ while it actually belongs to class $s$. To the best of our knowledge, this is the first time an evaluation of the performance of base classifiers across different classes has been proposed. The proposed confidence tensor compensates for the strengths and weaknesses of each base classifier in different classes, enabling the method to achieve superior results with a smaller number of base learners. To enhance generalization performance, we design a smooth and convex objective function that leverages the concept of margin, making the strong learner more discriminative. Furthermore, it is proved that in gradient matrix of the loss function, the sum of each column's elements is zero, allowing us to solve a constrained optimization problem using gradient-based methods. We then compare our algorithm with random forests of ten times the size and other classical methods across numerous datasets, demonstrating the superiority of our approach.
Abstract:Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods. However, for almost all existing FCM based methods, how to automatically selecting proper membership degree hyper-parameter values remains a challenging and unsolved problem. Mixture model based methods, while circumventing the difficulty of manually adjusting membership degree hyper-parameters inherent in FCM based methods, often have a preference for specific distributions, such as the Gaussian distribution. In this paper, we propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper-parameter value and handling data with non-Gaussian clusters. Moreover, by removing the graph embedding regularization, the proposed FCM model can degenerate into the simplified generalized Gaussian mixture model. Therefore, the proposed FCM model can be also seen as the generalized Gaussian mixture model with graph embedding. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the effectiveness of the proposed model.
Abstract:Ordinal regression is a specialized supervised problem where the labels show an inherent order. The order distinguishes it from normal multi-class problem. Support Vector Ordinal Regression, as an outstanding ordinal regression model, is widely used in many ordinal regression tasks. However, like most supervised learning algorithms, the design of SVOR is based on the assumption that the training data are real and reliable, which is difficult to satisfy in real-world data. In many practical applications, outliers are frequently present in the training set, potentially leading to misguide the learning process, such that the performance is non-optimal. In this paper, we propose a novel capped $\ell_{p}$-norm loss function that is theoretically robust to both light and heavy outliers. The capped $\ell_{p}$-norm loss can help the model detect and eliminate outliers during training process. Adhering to this concept, we introduce a new model, Capped $\ell_{p}$-Norm Support Vector Ordinal Regression(CSVOR), that is robust to outliers. CSVOR uses a weight matrix to detect and eliminate outliers during the training process to improve the robustness to outliers. Moreover, a Re-Weighted algorithm algorithm which is illustrated convergence by our theoretical results is proposed to effectively minimize the corresponding problem. Extensive experimental results demonstrate that our model outperforms state-of-the-art(SOTA) methods, particularly in the presence of outliers.
Abstract:Existing multigraph convolution methods either ignore the cross-view interaction among multiple graphs, or induce extremely high computational cost due to standard cross-view polynomial operators. To alleviate this problem, this paper proposes a Simple MultiGraph Convolution Networks (SMGCN) which first extracts consistent cross-view topology from multigraphs including edge-level and subgraph-level topology, then performs polynomial expansion based on raw multigraphs and consistent topologies. In theory, SMGCN utilizes the consistent topologies in polynomial expansion rather than standard cross-view polynomial expansion, which performs credible cross-view spatial message-passing, follows the spectral convolution paradigm, and effectively reduces the complexity of standard polynomial expansion. In the simulations, experimental results demonstrate that SMGCN achieves state-of-the-art performance on ACM and DBLP multigraph benchmark datasets. Our codes are available at https://github.com/frinkleko/SMGCN.
Abstract:In the last decade, embedded multi-label feature selection methods, incorporating the search for feature subsets into model optimization, have attracted considerable attention in accurately evaluating the importance of features in multi-label classification tasks. Nevertheless, the state-of-the-art embedded multi-label feature selection algorithms based on least square regression usually cannot preserve sufficient discriminative information in multi-label data. To tackle the aforementioned challenge, a novel embedded multi-label feature selection method, termed global redundancy and relevance optimization in orthogonal regression (GRROOR), is proposed to facilitate the multi-label feature selection. The method employs orthogonal regression with feature weighting to retain sufficient statistical and structural information related to local label correlations of the multi-label data in the feature learning process. Additionally, both global feature redundancy and global label relevancy information have been considered in the orthogonal regression model, which could contribute to the search for discriminative and non-redundant feature subsets in the multi-label data. The cost function of GRROOR is an unbalanced orthogonal Procrustes problem on the Stiefel manifold. A simple yet effective scheme is utilized to obtain an optimal solution. Extensive experimental results on ten multi-label data sets demonstrate the effectiveness of GRROOR.
Abstract:Support Vector Machine (SVM) stands out as a prominent machine learning technique widely applied in practical pattern recognition tasks. It achieves binary classification by maximizing the "margin", which represents the minimum distance between instances and the decision boundary. Although many efforts have been dedicated to expanding SVM for multi-class case through strategies such as one versus one and one versus the rest, satisfactory solutions remain to be developed. In this paper, we propose a novel method for multi-class SVM that incorporates pairwise class loss considerations and maximizes the minimum margin. Adhering to this concept, we embrace a new formulation that imparts heightened flexibility to multi-class SVM. Furthermore, the correlations between the proposed method and multiple forms of multi-class SVM are analyzed. The proposed regularizer, akin to the concept of "margin", can serve as a seamless enhancement over the softmax in deep learning, providing guidance for network parameter learning. Empirical evaluations demonstrate the effectiveness and superiority of our proposed method over existing multi-classification methods.Code is available at https://github.com/zz-haooo/M3SVM.