Abstract:We propose a Greedy strategy to solve the problem of Graph Cut, called GGC. It starts from the state where each data sample is regarded as a cluster and dynamically merges the two clusters which reduces the value of the global objective function the most until the required number of clusters is obtained, and the monotonicity of the sequence of objective function values is proved. To reduce the computational complexity of GGC, only mergers between clusters and their neighbors are considered. Therefore, GGC has a nearly linear computational complexity with respect to the number of samples. Also, unlike other algorithms, due to the greedy strategy, the solution of the proposed algorithm is unique. In other words, its performance is not affected by randomness. We apply the proposed method to solve the problem of normalized cut which is a widely concerned graph cut problem. Extensive experiments show that better solutions can often be achieved compared to the traditional two-stage optimization algorithm (eigendecomposition + k-means), on the normalized cut problem. In addition, the performance of GGC also has advantages compared to several state-of-the-art clustering algorithms.
Abstract:Open-set face forgery detection poses significant security threats and presents substantial challenges for existing detection models. These detectors primarily have two limitations: they cannot generalize across unknown forgery domains and inefficiently adapt to new data. To address these issues, we introduce an approach that is both general and parameter-efficient for face forgery detection. It builds on the assumption that different forgery source domains exhibit distinct style statistics. Previous methods typically require fully fine-tuning pre-trained networks, consuming substantial time and computational resources. In turn, we design a forgery-style mixture formulation that augments the diversity of forgery source domains, enhancing the model's generalizability across unseen domains. Drawing on recent advancements in vision transformers (ViT) for face forgery detection, we develop a parameter-efficient ViT-based detection model that includes lightweight forgery feature extraction modules and enables the model to extract global and local forgery clues simultaneously. We only optimize the inserted lightweight modules during training, maintaining the original ViT structure with its pre-trained ImageNet weights. This training strategy effectively preserves the informative pre-trained knowledge while flexibly adapting the model to the task of Deepfake detection. Extensive experimental results demonstrate that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters, representing an important step toward open-set Deepfake detection in the wild.