Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:3D Object Affordance Grounding aims to predict the functional regions on a 3D object and has laid the foundation for a wide range of applications in robotics. Recent advances tackle this problem via learning a mapping between 3D regions and a single human-object interaction image. However, the geometric structure of the 3D object and the object in the human-object interaction image are not always consistent, leading to poor generalization. To address this issue, we propose to learn generalizable invariant affordance knowledge from multiple human-object interaction images within the same affordance category. Specifically, we introduce the \textbf{M}ulti-\textbf{I}mage Guided Invariant-\textbf{F}eature-Aware 3D \textbf{A}ffordance \textbf{G}rounding (\textbf{MIFAG}) framework. It grounds 3D object affordance regions by identifying common interaction patterns across multiple human-object interaction images. First, the Invariant Affordance Knowledge Extraction Module (\textbf{IAM}) utilizes an iterative updating strategy to gradually extract aligned affordance knowledge from multiple images and integrate it into an affordance dictionary. Then, the Affordance Dictionary Adaptive Fusion Module (\textbf{ADM}) learns comprehensive point cloud representations that consider all affordance candidates in multiple images. Besides, the Multi-Image and Point Affordance (\textbf{MIPA}) benchmark is constructed and our method outperforms existing state-of-the-art methods on various experimental comparisons. Project page: \url{https://goxq.github.io/mifag}