Abstract:Visual images corrupted by various types and levels of degradations are commonly encountered in practical image compression. However, most existing image compression methods are tailored for clean images, therefore struggling to achieve satisfying results on these images. Joint compression and restoration methods typically focus on a single type of degradation and fail to address a variety of degradations in practice. To this end, we propose a unified framework for all-in-one image compression and restoration, which incorporates the image restoration capability against various degradations into the process of image compression. The key challenges involve distinguishing authentic image content from degradations, and flexibly eliminating various degradations without prior knowledge. Specifically, the proposed framework approaches these challenges from two perspectives: i.e., content information aggregation, and degradation representation aggregation. Extensive experiments demonstrate the following merits of our model: 1) superior rate-distortion (RD) performance on various degraded inputs while preserving the performance on clean data; 2) strong generalization ability to real-world and unseen scenarios; 3) higher computing efficiency over compared methods. Our code is available at https://github.com/ZeldaM1/All-in-one.
Abstract:While sequential recommendation achieves significant progress on capturing user-item transition patterns, transferring such large-scale recommender systems remains challenging due to the disjoint user and item groups across domains. In this paper, we propose a vector quantized meta learning for transferable sequential recommenders (MetaRec). Without requiring additional modalities or shared information across domains, our approach leverages user-item interactions from multiple source domains to improve the target domain performance. To solve the input heterogeneity issue, we adopt vector quantization that maps item embeddings from heterogeneous input spaces to a shared feature space. Moreover, our meta transfer paradigm exploits limited target data to guide the transfer of source domain knowledge to the target domain (i.e., learn to transfer). In addition, MetaRec adaptively transfers from multiple source tasks by rescaling meta gradients based on the source-target domain similarity, enabling selective learning to improve recommendation performance. To validate the effectiveness of our approach, we perform extensive experiments on benchmark datasets, where MetaRec consistently outperforms baseline methods by a considerable margin.
Abstract:Despite recent advancements in language and vision modeling, integrating rich multimodal knowledge into recommender systems continues to pose significant challenges. This is primarily due to the need for efficient recommendation, which requires adaptive and interactive responses. In this study, we focus on sequential recommendation and introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec). Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions. To integrate item features from diverse modalities, fMRLRec employs a simple mapping to project multimodal item features into an aligned feature space. Additionally, we design an efficient linear transformation that embeds smaller features into larger ones, substantially reducing memory requirements for large-scale training on recommendation data. Combined with improved state space modeling techniques, fMRLRec scales to different dimensions and only requires one-time training to produce multiple models tailored to various granularities. We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets, which consistently achieves superior performance over state-of-the-art baseline methods.
Abstract:The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
Abstract:Existing federated learning (FL) studies usually assume the training label space and test label space are identical. However, in real-world applications, this assumption is too ideal to be true. A new user could come up with queries that involve data from unseen classes, and such open-vocabulary queries would directly defect such FL systems. Therefore, in this work, we explicitly focus on the under-explored open-vocabulary challenge in FL. That is, for a new user, the global server shall understand her/his query that involves arbitrary unknown classes. To address this problem, we leverage the pre-trained vision-language models (VLMs). In particular, we present a novel adaptation framework tailored for VLMs in the context of FL, named as Federated Multimodal Prototyping (Fed-MP). Fed-MP adaptively aggregates the local model weights based on light-weight client residuals, and makes predictions based on a novel multimodal prototyping mechanism. Fed-MP exploits the knowledge learned from the seen classes, and robustifies the adapted VLM to unseen categories. Our empirical evaluation on various datasets validates the effectiveness of Fed-MP.
Abstract:The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
Abstract:Federated Recommendation (FR) emerges as a novel paradigm that enables privacy-preserving recommendations. However, traditional FR systems usually represent users/items with discrete identities (IDs), suffering from performance degradation due to the data sparsity and heterogeneity in FR. On the other hand, Large Language Models (LLMs) as recommenders have proven effective across various recommendation scenarios. Yet, LLM-based recommenders encounter challenges such as low inference efficiency and potential hallucination, compromising their performance in real-world scenarios. To this end, we propose GPT-FedRec, a federated recommendation framework leveraging ChatGPT and a novel hybrid Retrieval Augmented Generation (RAG) mechanism. GPT-FedRec is a two-stage solution. The first stage is a hybrid retrieval process, mining ID-based user patterns and text-based item features. Next, the retrieved results are converted into text prompts and fed into GPT for re-ranking. Our proposed hybrid retrieval mechanism and LLM-based re-rank aims to extract generalized features from data and exploit pretrained knowledge within LLM, overcoming data sparsity and heterogeneity in FR. In addition, the RAG approach also prevents LLM hallucination, improving the recommendation performance for real-world users. Experimental results on diverse benchmark datasets demonstrate the superior performance of GPT-FedRec against state-of-the-art baseline methods.
Abstract:Large language models (LLMs) have demonstrated a powerful ability to answer various queries as a general-purpose assistant. The continuous multi-modal large language models (MLLM) empower LLMs with the ability to perceive visual signals. The launch of GPT-4 (Generative Pre-trained Transformers) has generated significant interest in the research communities. GPT-4V(ison) has demonstrated significant power in both academia and industry fields, as a focal point in a new artificial intelligence generation. Though significant success was achieved by GPT-4V, exploring MLLMs in domain-specific analysis (e.g., marine analysis) that required domain-specific knowledge and expertise has gained less attention. In this study, we carry out the preliminary and comprehensive case study of utilizing GPT-4V for marine analysis. This report conducts a systematic evaluation of existing GPT-4V, assessing the performance of GPT-4V on marine research and also setting a new standard for future developments in MLLMs. The experimental results of GPT-4V show that the responses generated by GPT-4V are still far away from satisfying the domain-specific requirements of the marine professions. All images and prompts used in this study will be available at https://github.com/hkust-vgd/Marine_GPT-4V_Eval
Abstract:State-of-the-art sequential recommendation relies heavily on self-attention-based recommender models. Yet such models are computationally expensive and often too slow for real-time recommendation. Furthermore, the self-attention operation is performed at a sequence-level, thereby making low-cost incremental inference challenging. Inspired by recent advances in efficient language modeling, we propose linear recurrent units for sequential recommendation (LRURec). Similar to recurrent neural networks, LRURec offers rapid inference and can achieve incremental inference on sequential inputs. By decomposing the linear recurrence operation and designing recursive parallelization in our framework, LRURec provides the additional benefits of reduced model size and parallelizable training. Moreover, we optimize the architecture of LRURec by implementing a series of modifications to address the lack of non-linearity and improve training dynamics. To validate the effectiveness of our proposed LRURec, we conduct extensive experiments on multiple real-world datasets and compare its performance against state-of-the-art sequential recommenders. Experimental results demonstrate the effectiveness of LRURec, which consistently outperforms baselines by a significant margin. Results also highlight the efficiency of LRURec with our parallelized training paradigm and fast inference on long sequences, showing its potential to further enhance user experience in sequential recommendation.
Abstract:Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input without considering the invariant nature of the source image. As a result, extracting features from the source image is repeated in each interaction, resulting in substantial computational redundancy. In this work, we propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies and then recycles components for each user interaction. Thus, the efficiency of the whole interactive process can be significantly improved. To be specific, we apply the Decoupling-Recycling strategy from three perspectives to address three types of discrepancies, respectively. First, our model decouples the learning of source image semantics from the encoding of user guidance to process two types of input domains separately. Second, FDRN decouples high-level and low-level features from stratified semantic representations to enhance feature learning. Third, during the encoding of user guidance, current user guidance is decoupled from historical guidance to highlight the effect of current user guidance. We conduct extensive experiments on 6 datasets from different domains and modalities, which demonstrate the following merits of our model: 1) superior efficiency than other methods, particularly advantageous in challenging scenarios requiring long-term interactions (up to 4.25x faster), while achieving favorable segmentation performance; 2) strong applicability to various methods serving as a universal enhancement technique; 3) well cross-task generalizability, e.g., to medical image segmentation, and robustness against misleading user guidance.