Peter
Abstract:Despite recent advancements in language and vision modeling, integrating rich multimodal knowledge into recommender systems continues to pose significant challenges. This is primarily due to the need for efficient recommendation, which requires adaptive and interactive responses. In this study, we focus on sequential recommendation and introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec). Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions. To integrate item features from diverse modalities, fMRLRec employs a simple mapping to project multimodal item features into an aligned feature space. Additionally, we design an efficient linear transformation that embeds smaller features into larger ones, substantially reducing memory requirements for large-scale training on recommendation data. Combined with improved state space modeling techniques, fMRLRec scales to different dimensions and only requires one-time training to produce multiple models tailored to various granularities. We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets, which consistently achieves superior performance over state-of-the-art baseline methods.
Abstract:The comparison between Auto-Encoding (AE) and Auto-Regression (AR) has become an increasingly important topic with recent advances in sequential recommendation. At the heart of this discussion lies the comparison of BERT4Rec and SASRec, which serve as representative AE and AR models for self-attentive sequential recommenders. Yet the conclusion of this debate remains uncertain due to: (1) the lack of fair and controlled environments for experiments and evaluations; and (2) the presence of numerous confounding factors w.r.t. feature selection, modeling choices and optimization algorithms. In this work, we aim to answer this question by conducting a series of controlled experiments. We start by tracing the AE/AR debate back to its origin through a systematic re-evaluation of SASRec and BERT4Rec, discovering that AR models generally surpass AE models in sequential recommendation. In addition, we find that AR models further outperforms AE models when using a customized design space that includes additional features, modeling approaches and optimization techniques. Furthermore, the performance advantage of AR models persists in the broader HuggingFace transformer ecosystems. Lastly, we provide potential explanations and insights into AE/AR performance from two key perspectives: low-rank approximation and inductive bias. We make our code and data available at https://github.com/yueqirex/ModSAR
Abstract:Traditional recommendation systems are subject to a strong feedback loop by learning from and reinforcing past user-item interactions, which in turn limits the discovery of novel user interests. To address this, we introduce a hybrid hierarchical framework combining Large Language Models (LLMs) and classic recommendation models for user interest exploration. The framework controls the interfacing between the LLMs and the classic recommendation models through "interest clusters", the granularity of which can be explicitly determined by algorithm designers. It recommends the next novel interests by first representing "interest clusters" using language, and employs a fine-tuned LLM to generate novel interest descriptions that are strictly within these predefined clusters. At the low level, it grounds these generated interests to an item-level policy by restricting classic recommendation models, in this case a transformer-based sequence recommender to return items that fall within the novel clusters generated at the high level. We showcase the efficacy of this approach on an industrial-scale commercial platform serving billions of users. Live experiments show a significant increase in both exploration of novel interests and overall user enjoyment of the platform.
Abstract:State-of-the-art sequential recommendation relies heavily on self-attention-based recommender models. Yet such models are computationally expensive and often too slow for real-time recommendation. Furthermore, the self-attention operation is performed at a sequence-level, thereby making low-cost incremental inference challenging. Inspired by recent advances in efficient language modeling, we propose linear recurrent units for sequential recommendation (LRURec). Similar to recurrent neural networks, LRURec offers rapid inference and can achieve incremental inference on sequential inputs. By decomposing the linear recurrence operation and designing recursive parallelization in our framework, LRURec provides the additional benefits of reduced model size and parallelizable training. Moreover, we optimize the architecture of LRURec by implementing a series of modifications to address the lack of non-linearity and improve training dynamics. To validate the effectiveness of our proposed LRURec, we conduct extensive experiments on multiple real-world datasets and compare its performance against state-of-the-art sequential recommenders. Experimental results demonstrate the effectiveness of LRURec, which consistently outperforms baselines by a significant margin. Results also highlight the efficiency of LRURec with our parallelized training paradigm and fast inference on long sequences, showing its potential to further enhance user experience in sequential recommendation.
Abstract:Sequential recommenders have been widely used in industry due to their strength in modeling user preferences. While these models excel at learning a user's positive interests, less attention has been paid to learning from negative user feedback. Negative user feedback is an important lever of user control, and comes with an expectation that recommenders should respond quickly and reduce similar recommendations to the user. However, negative feedback signals are often ignored in the training objective of sequential retrieval models, which primarily aim at predicting positive user interactions. In this work, we incorporate explicit and implicit negative user feedback into the training objective of sequential recommenders in the retrieval stage using a "not-to-recommend" loss function that optimizes for the log-likelihood of not recommending items with negative feedback. We demonstrate the effectiveness of this approach using live experiments on a large-scale industrial recommender system. Furthermore, we address a challenge in measuring recommender responsiveness to negative feedback by developing a counterfactual simulation framework to compare recommender responses between different user actions, showing improved responsiveness from the modeling change.
Abstract:Low-rank multivariate regression (LRMR) is an important statistical learning model that combines highly correlated tasks as a multiresponse regression problem with low-rank priori on the coefficient matrix. In this paper, we study quantized LRMR, a practical setting where the responses and/or the covariates are discretized to finite precision. We focus on the estimation of the underlying coefficient matrix. To make consistent estimator that could achieve arbitrarily small error possible, we employ uniform quantization with random dithering, i.e., we add appropriate random noise to the data before quantization. Specifically, uniform dither and triangular dither are used for responses and covariates, respectively. Based on the quantized data, we propose the constrained Lasso and regularized Lasso estimators, and derive the non-asymptotic error bounds. With the aid of dithering, the estimators achieve minimax optimal rate, while quantization only slightly worsens the multiplicative factor in the error rate. Moreover, we extend our results to a low-rank regression model with matrix responses. We corroborate and demonstrate our theoretical results via simulations on synthetic data or image restoration.
Abstract:Amortized approaches to clustering have recently received renewed attention thanks to novel objective functions that exploit the expressiveness of deep learning models. In this work we revisit a recent proposal for fast amortized probabilistic clustering, the Clusterwise Clustering Process (CCP), which yields samples from the posterior distribution of cluster labels for sets of arbitrary size using only O(K) forward network evaluations, where K is an arbitrary number of clusters. While adequate in simple datasets, we show that the model can severely underfit complex datasets, and hypothesize that this limitation can be traced back to the implicit assumption that the probability of a point joining a cluster is equally sensitive to all the points available to join the same cluster. We propose an improved model, the Attentive Clustering Process (ACP), that selectively pays more attention to relevant points while preserving the invariance properties of the generative model. We illustrate the advantages of the new model in applications to spike-sorting in multi-electrode arrays and community discovery in networks. The latter case combines the ACP model with graph convolutional networks, and to our knowledge is the first deep learning model that handles an arbitrary number of communities.
Abstract:Proteins are the major building blocks of life, and actuators of almost all chemical and biophysical events in living organisms. Their native structures in turn enable their biological functions which have a fundamental role in drug design. This motivates predicting the structure of a protein from its sequence of amino acids, a fundamental problem in computational biology. In this work, we demonstrate state-of-the-art protein structure prediction (PSP) results using embeddings and deep learning models for prediction of backbone atom distance matrices and torsion angles. We recover 3D coordinates of backbone atoms and reconstruct full atom protein by optimization. We create a new gold standard dataset of proteins which is comprehensive and easy to use. Our dataset consists of amino acid sequences, Q8 secondary structures, position specific scoring matrices, multiple sequence alignment co-evolutionary features, backbone atom distance matrices, torsion angles, and 3D coordinates. We evaluate the quality of our structure prediction by RMSD on the latest Critical Assessment of Techniques for Protein Structure Prediction (CASP) test data and demonstrate competitive results with the winning teams and AlphaFold in CASP13 and supersede the results of the winning teams in CASP12. We make our data, models, and code publicly available.
Abstract:We tackle the problem of protein secondary structure prediction using a common task framework. This lead to the introduction of multiple ideas for neural architectures based on state of the art building blocks, used in this task for the first time. We take a principled machine learning approach, which provides genuine, unbiased performance measures, correcting longstanding errors in the application domain. We focus on the Q8 resolution of secondary structure, an active area for continuously improving methods. We use an ensemble of strong predictors to achieve accuracy of 70.7% (on the CB513 test set using the CB6133filtered training set). These results are statistically indistinguishable from those of the top existing predictors. In the spirit of reproducible research we make our data, models and code available, aiming to set a gold standard for purity of training and testing sets. Such good practices lower entry barriers to this domain and facilitate reproducible, extendable research.