Abstract:Current evaluations of synthetic tabular data mainly focus on how well joint distributions are modeled, often overlooking the assessment of their effectiveness in preserving realistic event sequences and coherent entity relationships across columns.This paper proposes three evaluation metrics designed to assess the preservation of logical relationships among columns in synthetic tabular data. We validate these metrics by assessing the performance of both classical and state-of-the-art generation methods on a real-world industrial dataset.Experimental results reveal that existing methods often fail to rigorously maintain logical consistency (e.g., hierarchical relationships in geography or organization) and dependencies (e.g., temporal sequences or mathematical relationships), which are crucial for preserving the fine-grained realism of real-world tabular data. Building on these insights, this study also discusses possible pathways to better capture logical relationships while modeling the distribution of synthetic tabular data.
Abstract:Graph distillation (GD) is an effective approach to extract useful information from large-scale network structures. However, existing methods, which operate in Euclidean space to generate condensed graphs, struggle to capture the inherent tree-like geometry of real-world networks, resulting in distilled graphs with limited task-specific information for downstream tasks. Furthermore, these methods often fail to extract dynamic properties from graphs, which are crucial for understanding information flow and facilitating graph continual learning. This paper presents the Hyperbolic Graph Distillation with Random Walks Optimization (HyDRO), a novel graph distillation approach that leverages hyperbolic embeddings to capture complex geometric patterns and optimize the spectral gap in hyperbolic space. Experiments show that HyDRO demonstrates strong task generalization, consistently outperforming state-of-the-art methods in both node classification and link prediction tasks. HyDRO also effectively preserves graph random walk properties, producing condensed graphs that achieve enhanced performance in continual graph learning. Additionally, HyDRO achieves competitive results on mainstream graph distillation benchmarks, while maintaining a strong balance between privacy and utility, and exhibiting robust resistance to noises.
Abstract:Traditional machine learning-based visual inspection systems require extensive data collection and repetitive model training to improve accuracy. These systems typically require expensive camera, computing equipment and significant machine learning expertise, which can substantially burden small and medium-sized enterprises. This study explores leveraging unsupervised learning methods with pre-trained models and low-cost hardware to create a cost-effective visual anomaly detection system. The research aims to develop a low-cost visual anomaly detection solution that uses minimal data for model training while maintaining generalizability and scalability. The system utilises unsupervised learning models from Anomalib and is deployed on affordable Raspberry Pi hardware through openVINO. The results show that this cost-effective system can complete anomaly defection training and inference on a Raspberry Pi in just 90 seconds using only 10 normal product images, achieving an F1 macro score exceeding 0.95. While the system is slightly sensitive to environmental changes like lighting, product positioning, or background, it remains a swift and economical method for factory automation inspection for small and medium-sized manufacturers