Abstract:Federated learning (FL) enables retailers to share model parameters for demand forecasting while maintaining privacy. However, heterogeneous data across diverse regions, driven by factors such as varying consumer behavior, poses challenges to the effectiveness of federated learning. To tackle this challenge, we propose Privacy-Adaptive Clustered Federated Learning (PA-CFL) tailored for demand forecasting on heterogeneous retail data. By leveraging differential privacy and feature importance distribution, PA-CFL groups retailers into distinct ``bubbles'', each forming its own federated learning system to effectively isolate data heterogeneity. Within each bubble, Transformer models are designed to predict local sales for each client. Our experiments demonstrate that PA-CFL significantly surpasses FedAvg and outperforms local learning in demand forecasting performance across all participating clients. Compared to local learning, PA-CFL achieves a 5.4% improvement in R^2, a 69% reduction in RMSE, and a 45% decrease in MAE. Our approach enables effective FL through adaptive adjustments to diverse noise levels and the range of clients participating in each bubble. By grouping participants and proactively filtering out high-risk clients, PA-CFL mitigates potential threats to the FL system. The findings demonstrate PA-CFL's ability to enhance federated learning in time series prediction tasks with heterogeneous data, achieving a balance between forecasting accuracy and privacy preservation in retail applications. Additionally, PA-CFL's capability to detect and neutralize poisoned data from clients enhances the system's robustness and reliability.
Abstract:This paper introduces TuneNSearch, a hybrid transfer learning and local search approach for addressing different variants of vehicle routing problems (VRP). Recently, multi-task learning has gained much attention for solving VRP variants. However, this adaptability often compromises the performance of the models. To address this challenge, we first pre-train a reinforcement learning model on the multi-depot VRP, followed by a short fine-tuning phase to adapt it to different variants. By leveraging the complexity of the multi-depot VRP, the pre-trained model learns richer node representations and gains more transferable knowledge compared to models trained on simpler routing problems, such as the traveling salesman problem. TuneNSearch employs, in the first stage, a Transformer-based architecture, augmented with a residual edge-graph attention network to capture the impact of edge distances and residual connections between layers. This architecture allows for a more precise capture of graph-structured data, improving the encoding of VRP's features. After inference, our model is also coupled with a second stage composed of a local search algorithm, which yields substantial performance gains with minimal computational overhead added. Results show that TuneNSearch outperforms many existing state-of-the-art models trained for each VRP variant, requiring only one-fifth of the training epochs. Our approach demonstrates strong generalization, achieving high performance across different tasks, distributions and problem sizes, thus addressing a long-standing gap in the literature.
Abstract:Federated learning (FL) enables retailers to share model parameters for demand forecasting while maintaining privacy. However, heterogeneous data across diverse regions, driven by factors such as varying consumer behavior, poses challenges to the effectiveness of federated learning. To tackle this challenge, we propose Bubble-Cluster Federated Learning (BFL), a novel clustering-based federated learning framework tailored for sales prediction. By leveraging differential privacy and feature importance distribution, BFL groups retailers into distinct "bubbles", each forming its own federated learning (FL) system to effectively isolate data heterogeneity. Within each bubble, Transformer models are designed to predict local sales for each client. Our experiments demonstrate that BFL significantly surpasses FedAvg and outperforms local learning in demand forecasting performance across all participating clients. Compared to local learning, BFL can achieve a 5.4\% improvement in R\textsuperscript{2}, a 69\% reduction in RMSE, and a 45\% decrease in MAE. Our study highlights BFL's adaptability in enabling effective federated learning through dynamic adjustments to noise levels and the range of clients participating in each bubble. This approach strategically groups participants into distinct "bubbles" while proactively identifying and filtering out risky clients that could compromise the FL system. The findings demonstrate BFL's ability to enhance collaborative learning in regression tasks on heterogeneous data, achieving a balance between forecasting accuracy and privacy preservation in retail applications. Additionally, BFL's capability to detect and neutralize poisoned data from clients enhances the system's robustness and reliability, ensuring more secure and effective federated learning.
Abstract:Link prediction is crucial for uncovering hidden connections within complex networks, enabling applications such as identifying potential customers and products. However, this research faces significant challenges, including concerns about data privacy, as well as high computational and storage costs, especially when dealing with large-scale networks. Condensed graphs, which are much smaller than the original graphs while retaining essential information, has become an effective solution to both maintain data utility and preserve privacy. Existing methods, however, initialize synthetic graphs through random node selection without considering node connectivity, and are mainly designed for node classification tasks. As a result, their potential for privacy-preserving link prediction remains largely unexplored. We introduce HyDRO\textsuperscript{+}, a graph condensation method guided by algebraic Jaccard similarity, which leverages local connectivity information to optimize condensed graph structures. Extensive experiments on four real-world networks show that our method outperforms state-of-the-art methods and even the original networks in balancing link prediction accuracy and privacy preservation. Moreover, our method achieves nearly 20* faster training and reduces storage requirements by 452*, as demonstrated on the Computers dataset, compared to link prediction on the original networks. This work represents the first attempt to leverage condensed graphs for privacy-preserving link prediction information sharing in real-world complex networks. It offers a promising pathway for preserving link prediction information while safeguarding privacy, advancing the use of graph condensation in large-scale networks with privacy concerns.
Abstract:Synthetic tabular data have widespread applications in industrial domains such as healthcare, finance, and supply chains, owing to their potential to protect privacy and mitigate data scarcity. However, generating realistic synthetic tabular data while preserving inter-column logical relationships remains a significant challenge for the existing generative models. To address these challenges, we propose LLM-TabFlow, a novel approach that leverages Large Language Model (LLM) reasoning to capture complex inter-column relationships and compress tabular data, while using Score-based Diffusion to model the distribution of the compressed data in latent space. Additionally, we introduce an evaluation framework, which is absent in literature, to fairly assess the performance of synthetic tabular data generation methods in real-world contexts. Using this framework, we conduct extensive experiments on two real-world industrial datasets, evaluating LLM-TabFlow against other five baseline methods, including SMOTE (an interpolation-based approach) and other state-of-the-art generative models. Our results show that LLM-TabFlow outperforms all baselines, fully preserving inter-column relationships while achieving the best balance between data fidelity, utility, and privacy. This study is the first to explicitly address inter-column relationship preservation in synthetic tabular data generation, offering new insights for developing more realistic and reliable tabular data generation methods.
Abstract:Current evaluations of synthetic tabular data mainly focus on how well joint distributions are modeled, often overlooking the assessment of their effectiveness in preserving realistic event sequences and coherent entity relationships across columns.This paper proposes three evaluation metrics designed to assess the preservation of logical relationships among columns in synthetic tabular data. We validate these metrics by assessing the performance of both classical and state-of-the-art generation methods on a real-world industrial dataset.Experimental results reveal that existing methods often fail to rigorously maintain logical consistency (e.g., hierarchical relationships in geography or organization) and dependencies (e.g., temporal sequences or mathematical relationships), which are crucial for preserving the fine-grained realism of real-world tabular data. Building on these insights, this study also discusses possible pathways to better capture logical relationships while modeling the distribution of synthetic tabular data.
Abstract:Graph distillation (GD) is an effective approach to extract useful information from large-scale network structures. However, existing methods, which operate in Euclidean space to generate condensed graphs, struggle to capture the inherent tree-like geometry of real-world networks, resulting in distilled graphs with limited task-specific information for downstream tasks. Furthermore, these methods often fail to extract dynamic properties from graphs, which are crucial for understanding information flow and facilitating graph continual learning. This paper presents the Hyperbolic Graph Distillation with Random Walks Optimization (HyDRO), a novel graph distillation approach that leverages hyperbolic embeddings to capture complex geometric patterns and optimize the spectral gap in hyperbolic space. Experiments show that HyDRO demonstrates strong task generalization, consistently outperforming state-of-the-art methods in both node classification and link prediction tasks. HyDRO also effectively preserves graph random walk properties, producing condensed graphs that achieve enhanced performance in continual graph learning. Additionally, HyDRO achieves competitive results on mainstream graph distillation benchmarks, while maintaining a strong balance between privacy and utility, and exhibiting robust resistance to noises.
Abstract:In today's globalized economy, comprehensive supply chain visibility is crucial for effective risk management. Achieving visibility remains a significant challenge due to limited information sharing among supply chain partners. This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility without relying on direct stakeholder information sharing. Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources and constructs KGs to capture complex interdependencies between supply chain entities. We employ zero-shot prompting for Named Entity Recognition (NER) and Relation Extraction (RE) tasks, eliminating the need for extensive domain-specific training. We validate the framework with a case study on electric vehicle supply chains, focusing on tracking critical minerals for battery manufacturing. Results show significant improvements in supply chain mapping, extending visibility beyond tier-2 suppliers. The framework reveals critical dependencies and alternative sourcing options, enhancing risk management and strategic planning. With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks. This research offers a scalable, flexible method for constructing domain-specific supply chain KGs, addressing longstanding challenges in visibility and paving the way for advancements in digital supply chain surveillance.
Abstract:The recent release of the Apple Vision Pro has reignited interest in the metaverse, showcasing the intensified efforts of technology giants in developing platforms and devices to facilitate its growth. As the metaverse continues to proliferate, it is foreseeable that everyday environments will become increasingly saturated with its presence. Consequently, uncovering links to these metaverse items will be a crucial first step to interacting with this new augmented world. In this paper, we address the problem of establishing connections with virtual worlds within everyday environments, especially those that are not readily discernible through direct visual inspection. We introduce a vision-based approach leveraging Artcode visual markers to uncover hidden metaverse links embedded in our ambient surroundings. This approach progressively localises the access points to the metaverse, transitioning from coarse to fine localisation, thus facilitating an exploratory interaction process. Detailed experiments are conducted to study the performance of the proposed approach, demonstrating its effectiveness in Artcode localisation and enabling new interaction opportunities.
Abstract:Rib fractures are a common and potentially severe injury that can be challenging and labor-intensive to detect in CT scans. While there have been efforts to address this field, the lack of large-scale annotated datasets and evaluation benchmarks has hindered the development and validation of deep learning algorithms. To address this issue, the RibFrac Challenge was introduced, providing a benchmark dataset of over 5,000 rib fractures from 660 CT scans, with voxel-level instance mask annotations and diagnosis labels for four clinical categories (buckle, nondisplaced, displaced, or segmental). The challenge includes two tracks: a detection (instance segmentation) track evaluated by an FROC-style metric and a classification track evaluated by an F1-style metric. During the MICCAI 2020 challenge period, 243 results were evaluated, and seven teams were invited to participate in the challenge summary. The analysis revealed that several top rib fracture detection solutions achieved performance comparable or even better than human experts. Nevertheless, the current rib fracture classification solutions are hardly clinically applicable, which can be an interesting area in the future. As an active benchmark and research resource, the data and online evaluation of the RibFrac Challenge are available at the challenge website. As an independent contribution, we have also extended our previous internal baseline by incorporating recent advancements in large-scale pretrained networks and point-based rib segmentation techniques. The resulting FracNet+ demonstrates competitive performance in rib fracture detection, which lays a foundation for further research and development in AI-assisted rib fracture detection and diagnosis.