Abstract:Designing faster algorithms for solving Mixed-Integer Linear Programming (MILP) problems is highly desired across numerous practical domains, as a vast array of complex real-world challenges can be effectively modeled as MILP formulations. Solving these problems typically employs the branch-and-bound algorithm, the core of which can be conceived as searching for a path of nodes (or sub-problems) that contains the optimal solution to the original MILP problem. Traditional approaches to finding this path rely heavily on hand-crafted, intuition-based heuristic strategies, which often suffer from unstable and unpredictable performance across different MILP problem instances. To address this limitation, we introduce DeepBound, a deep learning-based node selection algorithm that automates the learning of such human intuition from data. The core of DeepBound lies in learning to prioritize nodes containing the optimal solution, thereby improving solving efficiency. DeepBound introduces a multi-level feature fusion network to capture the node representations. To tackle the inherent node imbalance in branch-and-bound trees, DeepBound employs a pairwise training paradigm that enhances the model's ability to discriminate between nodes. Extensive experiments on three NP-hard MILP benchmarks demonstrate that DeepBound achieves superior solving efficiency over conventional heuristic rules and existing learning-based approaches, obtaining optimal feasible solutions with significantly reduced computation time. Moreover, DeepBound demonstrates strong generalization capability on large and complex instances. The analysis of its learned features reveals that the method can automatically discover more flexible and robust feature selection, which may effectively improve and potentially replace human-designed heuristic rules.
Abstract:Modern supply chains are increasingly exposed to disruptions from geopolitical events, demand shocks, trade restrictions, to natural disasters. While many of these disruptions originate deep in the supply network, most companies still lack visibility beyond Tier-1 suppliers, leaving upstream vulnerabilities undetected until the impact cascades downstream. To overcome this blind-spot and move from reactive recovery to proactive resilience, we introduce a minimally supervised agentic AI framework that autonomously monitors, analyses, and responds to disruptions across extended supply networks. The architecture comprises seven specialised agents powered by large language models and deterministic tools that jointly detect disruption signals from unstructured news, map them to multi-tier supplier networks, evaluate exposure based on network structure, and recommend mitigations such as alternative sourcing options. \rev{We evaluate the framework across 30 synthesised scenarios covering three automotive manufacturers and five disruption classes. The system achieves high accuracy across core tasks, with F1 scores between 0.962 and 0.991, and performs full end-to-end analyses in a mean of 3.83 minutes at a cost of \$0.0836 per disruption. Relative to industry benchmarks of multi-day, analyst-driven assessments, this represents a reduction of more than three orders of magnitude in response time. A real-world case study of the 2022 Russia-Ukraine conflict further demonstrates operational applicability. This work establishes a foundational step toward building resilient, proactive, and autonomous supply chains capable of managing disruptions across deep-tier networks.
Abstract:Recent research on Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) has demonstrated that agents can engage in \textit{complex}, \textit{multi-turn} negotiations, opening new avenues for agentic AI. However, existing LLM agents largely overlook the functional role of emotions in such negotiations, instead generating passive, preference-driven emotional responses that make them vulnerable to manipulation and strategic exploitation by adversarial counterparts. To address this gap, we present EvoEmo, an evolutionary reinforcement learning framework that optimizes dynamic emotional expression in negotiations. EvoEmo models emotional state transitions as a Markov Decision Process and employs population-based genetic optimization to evolve high-reward emotion policies across diverse negotiation scenarios. We further propose an evaluation framework with two baselines -- vanilla strategies and fixed-emotion strategies -- for benchmarking emotion-aware negotiation. Extensive experiments and ablation studies show that EvoEmo consistently outperforms both baselines, achieving higher success rates, higher efficiency, and increased buyer savings. This findings highlight the importance of adaptive emotional expression in enabling more effective LLM agents for multi-turn negotiation.
Abstract:Federated learning (FL) enables retailers to share model parameters for demand forecasting while maintaining privacy. However, heterogeneous data across diverse regions, driven by factors such as varying consumer behavior, poses challenges to the effectiveness of federated learning. To tackle this challenge, we propose Privacy-Adaptive Clustered Federated Learning (PA-CFL) tailored for demand forecasting on heterogeneous retail data. By leveraging differential privacy and feature importance distribution, PA-CFL groups retailers into distinct ``bubbles'', each forming its own federated learning system to effectively isolate data heterogeneity. Within each bubble, Transformer models are designed to predict local sales for each client. Our experiments demonstrate that PA-CFL significantly surpasses FedAvg and outperforms local learning in demand forecasting performance across all participating clients. Compared to local learning, PA-CFL achieves a 5.4% improvement in R^2, a 69% reduction in RMSE, and a 45% decrease in MAE. Our approach enables effective FL through adaptive adjustments to diverse noise levels and the range of clients participating in each bubble. By grouping participants and proactively filtering out high-risk clients, PA-CFL mitigates potential threats to the FL system. The findings demonstrate PA-CFL's ability to enhance federated learning in time series prediction tasks with heterogeneous data, achieving a balance between forecasting accuracy and privacy preservation in retail applications. Additionally, PA-CFL's capability to detect and neutralize poisoned data from clients enhances the system's robustness and reliability.
Abstract:This paper introduces TuneNSearch, a hybrid transfer learning and local search approach for addressing different variants of vehicle routing problems (VRP). Recently, multi-task learning has gained much attention for solving VRP variants. However, this adaptability often compromises the performance of the models. To address this challenge, we first pre-train a reinforcement learning model on the multi-depot VRP, followed by a short fine-tuning phase to adapt it to different variants. By leveraging the complexity of the multi-depot VRP, the pre-trained model learns richer node representations and gains more transferable knowledge compared to models trained on simpler routing problems, such as the traveling salesman problem. TuneNSearch employs, in the first stage, a Transformer-based architecture, augmented with a residual edge-graph attention network to capture the impact of edge distances and residual connections between layers. This architecture allows for a more precise capture of graph-structured data, improving the encoding of VRP's features. After inference, our model is also coupled with a second stage composed of a local search algorithm, which yields substantial performance gains with minimal computational overhead added. Results show that TuneNSearch outperforms many existing state-of-the-art models trained for each VRP variant, requiring only one-fifth of the training epochs. Our approach demonstrates strong generalization, achieving high performance across different tasks, distributions and problem sizes, thus addressing a long-standing gap in the literature.
Abstract:Link prediction is crucial for uncovering hidden connections within complex networks, enabling applications such as identifying potential customers and products. However, this research faces significant challenges, including concerns about data privacy, as well as high computational and storage costs, especially when dealing with large-scale networks. Condensed graphs, which are much smaller than the original graphs while retaining essential information, has become an effective solution to both maintain data utility and preserve privacy. Existing methods, however, initialize synthetic graphs through random node selection without considering node connectivity, and are mainly designed for node classification tasks. As a result, their potential for privacy-preserving link prediction remains largely unexplored. We introduce HyDRO\textsuperscript{+}, a graph condensation method guided by algebraic Jaccard similarity, which leverages local connectivity information to optimize condensed graph structures. Extensive experiments on four real-world networks show that our method outperforms state-of-the-art methods and even the original networks in balancing link prediction accuracy and privacy preservation. Moreover, our method achieves nearly 20* faster training and reduces storage requirements by 452*, as demonstrated on the Computers dataset, compared to link prediction on the original networks. This work represents the first attempt to leverage condensed graphs for privacy-preserving link prediction information sharing in real-world complex networks. It offers a promising pathway for preserving link prediction information while safeguarding privacy, advancing the use of graph condensation in large-scale networks with privacy concerns.
Abstract:Federated learning (FL) enables retailers to share model parameters for demand forecasting while maintaining privacy. However, heterogeneous data across diverse regions, driven by factors such as varying consumer behavior, poses challenges to the effectiveness of federated learning. To tackle this challenge, we propose Bubble-Cluster Federated Learning (BFL), a novel clustering-based federated learning framework tailored for sales prediction. By leveraging differential privacy and feature importance distribution, BFL groups retailers into distinct "bubbles", each forming its own federated learning (FL) system to effectively isolate data heterogeneity. Within each bubble, Transformer models are designed to predict local sales for each client. Our experiments demonstrate that BFL significantly surpasses FedAvg and outperforms local learning in demand forecasting performance across all participating clients. Compared to local learning, BFL can achieve a 5.4\% improvement in R\textsuperscript{2}, a 69\% reduction in RMSE, and a 45\% decrease in MAE. Our study highlights BFL's adaptability in enabling effective federated learning through dynamic adjustments to noise levels and the range of clients participating in each bubble. This approach strategically groups participants into distinct "bubbles" while proactively identifying and filtering out risky clients that could compromise the FL system. The findings demonstrate BFL's ability to enhance collaborative learning in regression tasks on heterogeneous data, achieving a balance between forecasting accuracy and privacy preservation in retail applications. Additionally, BFL's capability to detect and neutralize poisoned data from clients enhances the system's robustness and reliability, ensuring more secure and effective federated learning.
Abstract:Synthetic tabular data have widespread applications in industrial domains such as healthcare, finance, and supply chains, owing to their potential to protect privacy and mitigate data scarcity. However, generating realistic synthetic tabular data while preserving inter-column logical relationships remains a significant challenge for the existing generative models. To address these challenges, we propose LLM-TabFlow, a novel approach that leverages Large Language Model (LLM) reasoning to capture complex inter-column relationships and compress tabular data, while using Score-based Diffusion to model the distribution of the compressed data in latent space. Additionally, we introduce an evaluation framework, which is absent in literature, to fairly assess the performance of synthetic tabular data generation methods in real-world contexts. Using this framework, we conduct extensive experiments on two real-world industrial datasets, evaluating LLM-TabFlow against other five baseline methods, including SMOTE (an interpolation-based approach) and other state-of-the-art generative models. Our results show that LLM-TabFlow outperforms all baselines, fully preserving inter-column relationships while achieving the best balance between data fidelity, utility, and privacy. This study is the first to explicitly address inter-column relationship preservation in synthetic tabular data generation, offering new insights for developing more realistic and reliable tabular data generation methods.




Abstract:Current evaluations of synthetic tabular data mainly focus on how well joint distributions are modeled, often overlooking the assessment of their effectiveness in preserving realistic event sequences and coherent entity relationships across columns.This paper proposes three evaluation metrics designed to assess the preservation of logical relationships among columns in synthetic tabular data. We validate these metrics by assessing the performance of both classical and state-of-the-art generation methods on a real-world industrial dataset.Experimental results reveal that existing methods often fail to rigorously maintain logical consistency (e.g., hierarchical relationships in geography or organization) and dependencies (e.g., temporal sequences or mathematical relationships), which are crucial for preserving the fine-grained realism of real-world tabular data. Building on these insights, this study also discusses possible pathways to better capture logical relationships while modeling the distribution of synthetic tabular data.




Abstract:Graph distillation (GD) is an effective approach to extract useful information from large-scale network structures. However, existing methods, which operate in Euclidean space to generate condensed graphs, struggle to capture the inherent tree-like geometry of real-world networks, resulting in distilled graphs with limited task-specific information for downstream tasks. Furthermore, these methods often fail to extract dynamic properties from graphs, which are crucial for understanding information flow and facilitating graph continual learning. This paper presents the Hyperbolic Graph Distillation with Random Walks Optimization (HyDRO), a novel graph distillation approach that leverages hyperbolic embeddings to capture complex geometric patterns and optimize the spectral gap in hyperbolic space. Experiments show that HyDRO demonstrates strong task generalization, consistently outperforming state-of-the-art methods in both node classification and link prediction tasks. HyDRO also effectively preserves graph random walk properties, producing condensed graphs that achieve enhanced performance in continual graph learning. Additionally, HyDRO achieves competitive results on mainstream graph distillation benchmarks, while maintaining a strong balance between privacy and utility, and exhibiting robust resistance to noises.