In today's globalized economy, comprehensive supply chain visibility is crucial for effective risk management. Achieving visibility remains a significant challenge due to limited information sharing among supply chain partners. This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility without relying on direct stakeholder information sharing. Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources and constructs KGs to capture complex interdependencies between supply chain entities. We employ zero-shot prompting for Named Entity Recognition (NER) and Relation Extraction (RE) tasks, eliminating the need for extensive domain-specific training. We validate the framework with a case study on electric vehicle supply chains, focusing on tracking critical minerals for battery manufacturing. Results show significant improvements in supply chain mapping, extending visibility beyond tier-2 suppliers. The framework reveals critical dependencies and alternative sourcing options, enhancing risk management and strategic planning. With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks. This research offers a scalable, flexible method for constructing domain-specific supply chain KGs, addressing longstanding challenges in visibility and paving the way for advancements in digital supply chain surveillance.