Abstract:Recently, the self-supervised pre-training paradigm has shown great potential in leveraging large-scale unlabeled data to improve downstream task performance. However, increasing the scale of unlabeled pre-training data in real-world scenarios requires prohibitive computational costs and faces the challenge of uncurated samples. To address these issues, we build a task-specific self-supervised pre-training framework from a data selection perspective based on a simple hypothesis that pre-training on the unlabeled samples with similar distribution to the target task can bring substantial performance gains. Buttressed by the hypothesis, we propose the first yet novel framework for Scalable and Efficient visual Pre-Training (SEPT) by introducing a retrieval pipeline for data selection. SEPT first leverage a self-supervised pre-trained model to extract the features of the entire unlabeled dataset for retrieval pipeline initialization. Then, for a specific target task, SEPT retrievals the most similar samples from the unlabeled dataset based on feature similarity for each target instance for pre-training. Finally, SEPT pre-trains the target model with the selected unlabeled samples in a self-supervised manner for target data finetuning. By decoupling the scale of pre-training and available upstream data for a target task, SEPT achieves high scalability of the upstream dataset and high efficiency of pre-training, resulting in high model architecture flexibility. Results on various downstream tasks demonstrate that SEPT can achieve competitive or even better performance compared with ImageNet pre-training while reducing the size of training samples by one magnitude without resorting to any extra annotations.
Abstract:Current out-of-distribution (OOD) detection benchmarks are commonly built by defining one dataset as in-distribution (ID) and all others as OOD. However, these benchmarks unfortunately introduce some unwanted and impractical goals, e.g., to perfectly distinguish CIFAR dogs from ImageNet dogs, even though they have the same semantics and negligible covariate shifts. These unrealistic goals will result in an extremely narrow range of model capabilities, greatly limiting their use in real applications. To overcome these drawbacks, we re-design the benchmarks and propose the semantically coherent out-of-distribution detection (SC-OOD). On the SC-OOD benchmarks, existing methods suffer from large performance degradation, suggesting that they are extremely sensitive to low-level discrepancy between data sources while ignoring their inherent semantics. To develop an effective SC-OOD detection approach, we leverage an external unlabeled set and design a concise framework featured by unsupervised dual grouping (UDG) for the joint modeling of ID and OOD data. The proposed UDG can not only enrich the semantic knowledge of the model by exploiting unlabeled data in an unsupervised manner, but also distinguish ID/OOD samples to enhance ID classification and OOD detection tasks simultaneously. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on SC-OOD benchmarks. Code and benchmarks are provided on our project page: https://jingkang50.github.io/projects/scood.
Abstract:Deep semi-supervised learning (SSL) has experienced significant attention in recent years, to leverage a huge amount of unlabeled data to improve the performance of deep learning with limited labeled data. Pseudo-labeling is a popular approach to expand the labeled dataset. However, whether there is a more effective way of labeling remains an open problem. In this paper, we propose to label only the most representative samples to expand the labeled set. Representative samples, selected by indegree of corresponding nodes on a directed k-nearest neighbor (kNN) graph, lie in the k-nearest neighborhood of many other samples. We design a graph neural network (GNN) labeler to label them in a progressive learning manner. Aided by the progressive GNN labeler, our deep SSL approach outperforms state-of-the-art methods on several popular SSL benchmarks including CIFAR-10, SVHN, and ILSVRC-2012. Notably, we achieve 72.1% top-1 accuracy, surpassing the previous best result by 3.3%, on the challenging ImageNet benchmark with only $10\%$ labeled data.
Abstract:Webly supervised learning becomes attractive recently for its efficiency in data expansion without expensive human labeling. However, adopting search queries or hashtags as web labels of images for training brings massive noise that degrades the performance of DNNs. Especially, due to the semantic confusion of query words, the images retrieved by one query may contain tremendous images belonging to other concepts. For example, searching `tiger cat' on Flickr will return a dominating number of tiger images rather than the cat images. These realistic noisy samples usually have clear visual semantic clusters in the visual space that mislead DNNs from learning accurate semantic labels. To correct real-world noisy labels, expensive human annotations seem indispensable. Fortunately, we find that metadata can provide extra knowledge to discover clean web labels in a labor-free fashion, making it feasible to automatically provide correct semantic guidance among the massive label-noisy web data. In this paper, we propose an automatic label corrector VSGraph-LC based on the visual-semantic graph. VSGraph-LC starts from anchor selection referring to the semantic similarity between metadata and correct label concepts, and then propagates correct labels from anchors on a visual graph using graph neural network (GNN). Experiments on realistic webly supervised learning datasets Webvision-1000 and NUS-81-Web show the effectiveness and robustness of VSGraph-LC. Moreover, VSGraph-LC reveals its advantage on the open-set validation set.
Abstract:This paper focuses on webly supervised learning (WSL), where datasets are built by crawling samples from the Internet and directly using search queries as web labels. Although WSL benefits from fast and low-cost data collection, noises in web labels hinder better performance of the image classification model. To alleviate this problem, in recent works, self-label supervised loss $\mathcal{L}_s$ is utilized together with webly supervised loss $\mathcal{L}_w$. $\mathcal{L}_s$ relies on pseudo labels predicted by the model itself. Since the correctness of the web label or pseudo label is usually on a case-by-case basis for each web sample, it is desirable to adjust the balance between $\mathcal{L}_s$ and $\mathcal{L}_w$ on sample level. Inspired by the ability of Deep Neural Networks (DNNs) in confidence prediction, we introduce Self-Contained Confidence (SCC) by adapting model uncertainty for WSL setting, and use it to sample-wisely balance $\mathcal{L}_s$ and $\mathcal{L}_w$. Therefore, a simple yet effective WSL framework is proposed. A series of SCC-friendly regularization approaches are investigated, among which the proposed graph-enhanced mixup is the most effective method to provide high-quality confidence to enhance our framework. The proposed WSL framework has achieved the state-of-the-art results on two large-scale WSL datasets, WebVision-1000 and Food101-N. Code is available at https://github.com/bigvideoresearch/SCC.
Abstract:Image-based virtual try-on systems for fitting new in-shop clothes into a person image have attracted increasing research attention, yet is still challenging. A desirable pipeline should not only transform the target clothes into the most fitting shape seamlessly but also preserve well the clothes identity in the generated image, that is, the key characteristics (e.g. texture, logo, embroidery) that depict the original clothes. However, previous image-conditioned generation works fail to meet these critical requirements towards the plausible virtual try-on performance since they fail to handle large spatial misalignment between the input image and target clothes. Prior work explicitly tackled spatial deformation using shape context matching, but failed to preserve clothing details due to its coarse-to-fine strategy. In this work, we propose a new fully-learnable Characteristic-Preserving Virtual Try-On Network(CP-VTON) for addressing all real-world challenges in this task. First, CP-VTON learns a thin-plate spline transformation for transforming the in-shop clothes into fitting the body shape of the target person via a new Geometric Matching Module (GMM) rather than computing correspondences of interest points as prior works did. Second, to alleviate boundary artifacts of warped clothes and make the results more realistic, we employ a Try-On Module that learns a composition mask to integrate the warped clothes and the rendered image to ensure smoothness. Extensive experiments on a fashion dataset demonstrate our CP-VTON achieves the state-of-the-art virtual try-on performance both qualitatively and quantitatively.
Abstract:OCR character segmentation for multilingual printed documents is difficult due to the diversity of different linguistic characters. Previous approaches mainly focus on monolingual texts and are not suitable for multilingual-lingual cases. In this work, we particularly tackle the Chinese/English mixed case by reframing it as a semantic segmentation problem. We take advantage of the successful architecture called fully convolutional networks (FCN) in the field of semantic segmentation. Given a wide enough receptive field, FCN can utilize the necessary context around a horizontal position to determinate whether this is a splitting point or not. As a deep neural architecture, FCN can automatically learn useful features from raw text line images. Although trained on synthesized samples with simulated random disturbance, our FCN model generalizes well to real-world samples. The experimental results show that our model significantly outperforms the previous methods.