Abstract:Collaborative stories, which are texts created through the collaborative efforts of multiple authors with different writing styles and intentions, pose unique challenges for NLP models. Understanding and generating such stories remains an underexplored area due to the lack of open-domain corpora. To address this, we introduce STORYWARS, a new dataset of over 40,000 collaborative stories written by 9,400 different authors from an online platform. We design 12 task types, comprising 7 understanding and 5 generation task types, on STORYWARS, deriving 101 diverse story-related tasks in total as a multi-task benchmark covering all fully-supervised, few-shot, and zero-shot scenarios. Furthermore, we present our instruction-tuned model, INSTRUCTSTORY, for the story tasks showing that instruction tuning, in addition to achieving superior results in zero-shot and few-shot scenarios, can also obtain the best performance on the fully-supervised tasks in STORYWARS, establishing strong multi-task benchmark performances on STORYWARS.
Abstract:Prompt-based techniques have demostrated great potential for improving the few-shot generalization of pretrained language models. However, their performance heavily relies on the manual design of prompts and thus requires a lot of human efforts. In this paper, we introduce Genetic Prompt Search (GPS) to improve few-shot learning with prompts, which utilizes a genetic algorithm to automatically search for high-performing prompts. GPS is gradient-free and requires no update of model parameters but only a small validation set. Experiments on diverse datasets proved the effectiveness of GPS, which outperforms manual prompts by a large margin of 2.6 points. Our method is also better than other parameter-efficient tuning methods such as prompt tuning.
Abstract:We propose a multitask pretraining approach ZeroPrompt for zero-shot generalization, focusing on task scaling and zero-shot prompting. While previous models are trained on only a few dozen tasks, we scale to 1,000 tasks for the first time using real-world data. This leads to a crucial discovery that task scaling can be an efficient alternative to model scaling; i.e., the model size has little impact on performance with an extremely large number of tasks. Our results show that task scaling can substantially improve training efficiency by 30 times in FLOPs. Moreover, we present a prompting method that incorporates a genetic algorithm to automatically search for the best prompt for unseen tasks, along with a few other improvements. Empirically, ZeroPrompt substantially improves both the efficiency and the performance of zero-shot learning across a variety of academic and production datasets.
Abstract:The task of rationalization aims to extract pieces of input text as rationales to justify neural network predictions on text classification tasks. By definition, rationales represent key text pieces used for prediction and thus should have similar classification feature distribution compared to the original input text. However, previous methods mainly focused on maximizing the mutual information between rationales and labels while neglecting the relationship between rationales and input text. To address this issue, we propose a novel rationalization method that matches the distributions of rationales and input text in both the feature space and output space. Empirically, the proposed distribution matching approach consistently outperforms previous methods by a large margin. Our data and code are available.
Abstract:Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.
Abstract:Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental factor given the representation while maximizing the certainty of making task-specific predictions. On three benchmark tasks, namely fair and bias-free classification, language-independent generation, and lighting-independent image classification, we show that the proposed framework induces an invariant representation, and leads to better generalization evidenced by the improved performance.