Abstract:There is a growing interest in expanding the input capacity of language models (LMs) across various domains. However, simply increasing the context window does not guarantee robust performance across diverse long-input processing tasks, such as understanding extensive documents and extracting detailed information from lengthy and noisy data. In response, we introduce SEGMENT+, a general framework that enables LMs to handle extended inputs within limited context windows efficiently. SEGMENT+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable. Our extensive experiments across various model sizes, focusing on long-document question-answering and Needle-in-a-Haystack tasks, demonstrate the effectiveness of SEGMENT+ in improving performance.
Abstract:Human-level driving is an ultimate goal of autonomous driving. Conventional approaches formulate autonomous driving as a perception-prediction-planning framework, yet their systems do not capitalize on the inherent reasoning ability and experiential knowledge of humans. In this paper, we propose a fundamental paradigm shift from current pipelines, exploiting Large Language Models (LLMs) as a cognitive agent to integrate human-like intelligence into autonomous driving systems. Our approach, termed Agent-Driver, transforms the traditional autonomous driving pipeline by introducing a versatile tool library accessible via function calls, a cognitive memory of common sense and experiential knowledge for decision-making, and a reasoning engine capable of chain-of-thought reasoning, task planning, motion planning, and self-reflection. Powered by LLMs, our Agent-Driver is endowed with intuitive common sense and robust reasoning capabilities, thus enabling a more nuanced, human-like approach to autonomous driving. We evaluate our approach on the large-scale nuScenes benchmark, and extensive experiments substantiate that our Agent-Driver significantly outperforms the state-of-the-art driving methods by a large margin. Our approach also demonstrates superior interpretability and few-shot learning ability to these methods. Code will be released.
Abstract:We present a simple yet effective approach that can transform the OpenAI GPT-3.5 model into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge in autonomous driving, aiming to plan a driving trajectory that is safe and comfortable. Existing motion planners predominantly leverage heuristic methods to forecast driving trajectories, yet these approaches demonstrate insufficient generalization capabilities in the face of novel and unseen driving scenarios. In this paper, we propose a novel approach to motion planning that capitalizes on the strong reasoning capabilities and generalization potential inherent to Large Language Models (LLMs). The fundamental insight of our approach is the reformulation of motion planning as a language modeling problem, a perspective not previously explored. Specifically, we represent the planner inputs and outputs as language tokens, and leverage the LLM to generate driving trajectories through a language description of coordinate positions. Furthermore, we propose a novel prompting-reasoning-finetuning strategy to stimulate the numerical reasoning potential of the LLM. With this strategy, the LLM can describe highly precise trajectory coordinates and also its internal decision-making process in natural language. We evaluate our approach on the large-scale nuScenes dataset, and extensive experiments substantiate the effectiveness, generalization ability, and interpretability of our GPT-based motion planner. Code is now available at https://github.com/PointsCoder/GPT-Driver.
Abstract:Existing Visual Question Answering (VQA) models have explored various visual relationships between objects in the image to answer complex questions, which inevitably introduces irrelevant information brought by inaccurate object detection and text grounding. To address the problem, we propose a Question-Driven Graph Fusion Network (QD-GFN). It first models semantic, spatial, and implicit visual relations in images by three graph attention networks, then question information is utilized to guide the aggregation process of the three graphs, further, our QD-GFN adopts an object filtering mechanism to remove question-irrelevant objects contained in the image. Experiment results demonstrate that our QD-GFN outperforms the prior state-of-the-art on both VQA 2.0 and VQA-CP v2 datasets. Further analysis shows that both the novel graph aggregation method and object filtering mechanism play a significant role in improving the performance of the model.
Abstract:Most existing approaches to Visual Question Answering (VQA) answer questions directly, however, people usually decompose a complex question into a sequence of simple sub questions and finally obtain the answer to the original question after answering the sub question sequence(SQS). By simulating the process, this paper proposes a conversation-based VQA (Co-VQA) framework, which consists of three components: Questioner, Oracle, and Answerer. Questioner raises the sub questions using an extending HRED model, and Oracle answers them one-by-one. An Adaptive Chain Visual Reasoning Model (ACVRM) for Answerer is also proposed, where the question-answer pair is used to update the visual representation sequentially. To perform supervised learning for each model, we introduce a well-designed method to build a SQS for each question on VQA 2.0 and VQA-CP v2 datasets. Experimental results show that our method achieves state-of-the-art on VQA-CP v2. Further analyses show that SQSs help build direct semantic connections between questions and images, provide question-adaptive variable-length reasoning chains, and with explicit interpretability as well as error traceability.
Abstract:Structured text understanding on Visually Rich Documents (VRDs) is a crucial part of Document Intelligence. Due to the complexity of content and layout in VRDs, structured text understanding has been a challenging task. Most existing studies decoupled this problem into two sub-tasks: entity labeling and entity linking, which require an entire understanding of the context of documents at both token and segment levels. However, little work has been concerned with the solutions that efficiently extract the structured data from different levels. This paper proposes a unified framework named StrucTexT, which is flexible and effective for handling both sub-tasks. Specifically, based on the transformer, we introduce a segment-token aligned encoder to deal with the entity labeling and entity linking tasks at different levels of granularity. Moreover, we design a novel pre-training strategy with three self-supervised tasks to learn a richer representation. StrucTexT uses the existing Masked Visual Language Modeling task and the new Sentence Length Prediction and Paired Boxes Direction tasks to incorporate the multi-modal information across text, image, and layout. We evaluate our method for structured text understanding at segment-level and token-level and show it outperforms the state-of-the-art counterparts with significantly superior performance on the FUNSD, SROIE, and EPHOIE datasets.