Abstract:A proficient summarization model should exhibit both flexibility -- the capacity to handle a range of in-domain summarization tasks, and adaptability -- the competence to acquire new knowledge and adjust to unseen out-of-domain tasks. Unlike large language models (LLMs) that achieve this through parameter scaling, we propose a more parameter-efficient approach in this study. Our motivation rests on the principle that the general summarization ability to capture salient information can be shared across different tasks, while the domain-specific summarization abilities need to be distinct and tailored. Concretely, we propose MoeSumm, a Mixture-of-Expert Summarization architecture, which utilizes a main expert for gaining the general summarization capability and deputy experts that selectively collaborate to meet specific summarization task requirements. We further propose a max-margin loss to stimulate the separation of these abilities. Our model's distinct separation of general and domain-specific summarization abilities grants it with notable flexibility and adaptability, all while maintaining parameter efficiency. MoeSumm achieves flexibility by managing summarization across multiple domains with a single model, utilizing a shared main expert and selected deputy experts. It exhibits adaptability by tailoring deputy experts to cater to out-of-domain few-shot and zero-shot scenarios. Experimental results on 11 datasets show the superiority of our model compared with recent baselines and LLMs. We also provide statistical and visual evidence of the distinct separation of the two abilities in MoeSumm (https://github.com/iriscxy/MoE_Summ).
Abstract:Nowadays, neural text generation has made tremendous progress in abstractive summarization tasks. However, most of the existing summarization models take in the whole document all at once, which sometimes cannot meet the needs in practice. Practically, social text streams such as news events and tweets keep growing from time to time, and can only be fed to the summarization system step by step. Hence, in this paper, we propose the task of Stepwise Summarization, which aims to generate a new appended summary each time a new document is proposed. The appended summary should not only summarize the newly added content but also be coherent with the previous summary, to form an up-to-date complete summary. To tackle this challenge, we design an adversarial learning model, named Stepwise Summary Generator (SSG). First, SSG selectively processes the new document under the guidance of the previous summary, obtaining polished document representation. Next, SSG generates the summary considering both the previous summary and the document. Finally, a convolutional-based discriminator is employed to determine whether the newly generated summary is coherent with the previous summary. For the experiment, we extend the traditional two-step update summarization setting to a multi-step stepwise setting, and re-propose a large-scale stepwise summarization dataset based on a public story generation dataset. Extensive experiments on this dataset show that SSG achieves state-of-the-art performance in terms of both automatic metrics and human evaluations. Ablation studies demonstrate the effectiveness of each module in our framework. We also discuss the benefits and limitations of recent large language models on this task.
Abstract:Text matching systems have become a fundamental service in most searching platforms. For instance, they are responsible for matching user queries to relevant candidate items, or rewriting the user-input query to a pre-selected high-performing one for a better search experience. In practice, both the queries and items often contain multiple attributes, such as the category of the item and the location mentioned in the query, which represent condensed key information that is helpful for matching. However, most of the existing works downplay the effectiveness of attributes by integrating them into text representations as supplementary information. Hence, in this work, we focus on exploring the relationship between the attributes from two sides. Since attributes from two ends are often not aligned in terms of number and type, we propose to exploit the benefit of attributes by multiple-intent modeling. The intents extracted from attributes summarize the diverse needs of queries and provide rich content of items, which are more refined and abstract, and can be aligned for paired inputs. Concretely, we propose a multi-intent attribute-aware matching model (MIM), which consists of three main components: attribute-aware encoder, multi-intent modeling, and intent-aware matching. In the attribute-aware encoder, the text and attributes are weighted and processed through a scaled attention mechanism with regard to the attributes' importance. Afterward, the multi-intent modeling extracts intents from two ends and aligns them. Herein, we come up with a distribution loss to ensure the learned intents are diverse but concentrated, and a kullback-leibler divergence loss that aligns the learned intents. Finally, in the intent-aware matching, the intents are evaluated by a self-supervised masking task, and then incorporated to output the final matching result.
Abstract:A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input. In this work, we first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise. To create semantic-consistent substitutes, we propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models. Experimental results show that state-of-the-art summarization models have a significant decrease in performance on adversarial and noisy test sets. Next, we analyze the vulnerability of the summarization systems and explore improving the robustness by data augmentation. Specifically, the first brittleness factor we found is the poor understanding of infrequent words in the input. Correspondingly, we feed the encoder with more diverse cases created by SummAttacker in the input space. The other factor is in the latent space, where the attacked inputs bring more variations to the hidden states. Hence, we construct adversarial decoder input and devise manifold softmixing operation in hidden space to introduce more diversity. Experimental results on Gigaword and CNN/DM datasets demonstrate that our approach achieves significant improvements over strong baselines and exhibits higher robustness on noisy, attacked, and clean datasets.
Abstract:Automatic summarization plays an important role in the exponential document growth on the Web. On content websites such as CNN.com and WikiHow.com, there often exist various kinds of side information along with the main document for attention attraction and easier understanding, such as videos, images, and queries. Such information can be used for better summarization, as they often explicitly or implicitly mention the essence of the article. However, most of the existing side-aware summarization methods are designed to incorporate either single-modal or multi-modal side information, and cannot effectively adapt to each other. In this paper, we propose a general summarization framework, which can flexibly incorporate various modalities of side information. The main challenges in designing a flexible summarization model with side information include: (1) the side information can be in textual or visual format, and the model needs to align and unify it with the document into the same semantic space, (2) the side inputs can contain information from various aspects, and the model should recognize the aspects useful for summarization. To address these two challenges, we first propose a unified topic encoder, which jointly discovers latent topics from the document and various kinds of side information. The learned topics flexibly bridge and guide the information flow between multiple inputs in a graph encoder through a topic-aware interaction. We secondly propose a triplet contrastive learning mechanism to align the single-modal or multi-modal information into a unified semantic space, where the summary quality is enhanced by better understanding the document and side information. Results show that our model significantly surpasses strong baselines on three public single-modal or multi-modal benchmark summarization datasets.
Abstract:As it is cumbersome and expensive to acquire a huge amount of data for training neural dialog models, data augmentation is proposed to effectively utilize existing training samples. However, current data augmentation techniques on the dialog generation task mostly augment all cases in the training dataset without considering the intrinsic attributes between different cases. We argue that not all cases are beneficial for augmentation task, and the cases suitable for augmentation should obey the following two attributes: (1) low-quality (the dialog model cannot generate a high-quality response for the case), (2) representative (the case should represent the property of the whole dataset). Herein, we explore this idea by proposing a Selective Data Augmentation framework (SDA) for the response generation task. SDA employs a dual adversarial network to select the lowest quality and most representative data points for augmentation in one stage. Extensive experiments conducted on two publicly available datasets, i.e., DailyDialog and OpenSubtitles, show that our framework can improve the response generation performance with respect to various metrics.
Abstract:Review summarization is a non-trivial task that aims to summarize the main idea of the product review in the E-commerce website. Different from the document summary which only needs to focus on the main facts described in the document, review summarization should not only summarize the main aspects mentioned in the review but also reflect the personal style of the review author. Although existing review summarization methods have incorporated the historical reviews of both customer and product, they usually simply concatenate and indiscriminately model this two heterogeneous information into a long sequence. Moreover, the rating information can also provide a high-level abstraction of customer preference, it has not been used by the majority of methods. In this paper, we propose the Heterogeneous Historical Review aware Review Summarization Model (HHRRS) which separately models the two types of historical reviews with the rating information by a graph reasoning module with a contrastive loss. We employ a multi-task framework that conducts the review sentiment classification and summarization jointly. Extensive experiments on four benchmark datasets demonstrate the superiority of HHRRS on both tasks.
Abstract:Interview has been regarded as one of the most crucial step for recruitment. To fully prepare for the interview with the recruiters, job seekers usually practice with mock interviews between each other. However, such a mock interview with peers is generally far away from the real interview experience: the mock interviewers are not guaranteed to be professional and are not likely to behave like a real interviewer. Due to the rapid growth of online recruitment in recent years, recruiters tend to have online interviews, which makes it possible to collect real interview data from real interviewers. In this paper, we propose a novel application named EZInterviewer, which aims to learn from the online interview data and provides mock interview services to the job seekers. The task is challenging in two ways: (1) the interview data are now available but still of low-resource; (2) to generate meaningful and relevant interview dialogs requires thorough understanding of both resumes and job descriptions. To address the low-resource challenge, EZInterviewer is trained on a very small set of interview dialogs. The key idea is to reduce the number of parameters that rely on interview dialogs by disentangling the knowledge selector and dialog generator so that most parameters can be trained with ungrounded dialogs as well as the resume data that are not low-resource. Evaluation results on a real-world job interview dialog dataset indicate that we achieve promising results to generate mock interviews. With the help of EZInterviewer, we hope to make mock interview practice become easier for job seekers.
Abstract:Nowadays, time-stamped web documents related to a general news query floods spread throughout the Internet, and timeline summarization targets concisely summarizing the evolution trajectory of events along the timeline. Unlike traditional document summarization, timeline summarization needs to model the time series information of the input events and summarize important events in chronological order. To tackle this challenge, in this paper, we propose a Unified Timeline Summarizer (UTS) that can generate abstractive and extractive timeline summaries in time order. Concretely, in the encoder part, we propose a graph-based event encoder that relates multiple events according to their content dependency and learns a global representation of each event. In the decoder part, to ensure the chronological order of the abstractive summary, we propose to extract the feature of event-level attention in its generation process with sequential information remained and use it to simulate the evolutionary attention of the ground truth summary. The event-level attention can also be used to assist in extracting summary, where the extracted summary also comes in time sequence. We augment the previous Chinese large-scale timeline summarization dataset and collect a new English timeline dataset. Extensive experiments conducted on these datasets and on the out-of-domain Timeline 17 dataset show that UTS achieves state-of-the-art performance in terms of both automatic and human evaluations.
Abstract:In a citation graph, adjacent paper nodes share related scientific terms and topics. The graph thus conveys unique structure information of document-level relatedness that can be utilized in the paper summarization task, for exploring beyond the intra-document information. In this work, we focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings. We first propose a Multi-granularity Unsupervised Summarization model (MUS) as a simple and low-cost solution to the task. MUS finetunes a pre-trained encoder model on the citation graph by link prediction tasks. Then, the abstract sentences are extracted from the corresponding paper considering multi-granularity information. Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework. Motivated by this, we next propose a Graph-based Supervised Summarization model (GSS) to achieve more accurate results on the task when large-scale labeled data are available. Apart from employing the link prediction as an auxiliary task, GSS introduces a gated sentence encoder and a graph information fusion module to take advantage of the graph information to polish the sentence representation. Experiments on a public benchmark dataset show that MUS and GSS bring substantial improvements over the prior state-of-the-art model.