Abstract:With the evolution of artificial intelligence-generated content (AIGC) techniques and the development of space-air-ground integrated networks (SAGIN), there will be a growing opportunity to enhance more users' mobile experience with customized AIGC applications. This is made possible through the use of parameter-efficient fine-tuning (PEFT) training alongside mobile edge computing. In this paper, we formulate the optimization problem of maximizing the parameter training efficiency of the SAGIN system over wireless networks under limited resource constraints. We propose the Parameter training efficiency Aware Resource Allocation (PARA) technique to jointly optimize user association, data offloading, and communication and computational resource allocation. Solid proofs are presented to solve this difficult sum of ratios problem based on quadratically constrained quadratic programming (QCQP), semidefinite programming (SDP), graph theory, and fractional programming (FP) techniques. Our proposed PARA technique is effective in finding a stationary point of this non-convex problem. The simulation results demonstrate that the proposed PARA method outperforms other baselines.
Abstract:Wireless communication is rapidly evolving, and future wireless communications (6G and beyond) will be more heterogeneous, multi-layered, and complex, which poses challenges to traditional communications. Adaptive technologies in traditional communication systems respond to environmental changes by modifying system parameters and structures on their own and are not flexible and agile enough to satisfy requirements in future communications. To tackle these challenges, we propose a novel self-evolving communication framework, which consists of three layers: data layer, information layer, and knowledge layer. The first two layers allow communication systems to sense environments, fuse data, and generate a knowledge base for the knowledge layer. When dealing with a variety of application scenarios and environments, the generated knowledge is subsequently fed back to the first two layers for communication in practical application scenarios to obtain self-evolving ability and enhance the robustness of the system. In this paper, we first highlight the limitations of current adaptive communication systems and the need for intelligence, automation, and self-evolution in future wireless communications. We overview the development of self-evolving technologies and conceive the concept of self-evolving communications with its hypothetical architecture. To demonstrate the power of self-evolving modules, we compare the performances of a communication system with and without evolution. We then provide some potential techniques that enable self-evolving communications and challenges in implementing them.
Abstract:The convergence of blockchain, Metaverse, and non-fungible tokens (NFTs) brings transformative digital opportunities alongside challenges like privacy and resource management. Addressing these, we focus on optimizing user connectivity and resource allocation in an NFT-centric and blockchain-enabled Metaverse in this paper. Through user work-offloading, we optimize data tasks, user connection parameters, and server computing frequency division. In the resource allocation phase, we optimize communication-computation resource distributions, including bandwidth, transmit power, and computing frequency. We introduce the trust-cost ratio (TCR), a pivotal measure combining trust scores from users' resources and server history with delay and energy costs. This balance ensures sustained user engagement and trust. The DASHF algorithm, central to our approach, encapsulates the Dinkelbach algorithm, alternating optimization, semidefinite relaxation (SDR), the Hungarian method, and a novel fractional programming technique from a recent IEEE JSAC paper [2]. The most challenging part of DASHF is to rewrite an optimization problem as Quadratically Constrained Quadratic Programming (QCQP) via carefully designed transformations, in order to be solved by SDR and the Hungarian algorithm. Extensive simulations validate the DASHF algorithm's efficacy, revealing critical insights for enhancing blockchain-Metaverse applications, especially with NFTs.
Abstract:In the rapidly evolving landscape of large language models (LLMs) and mobile edge computing, the need for efficient service delivery to mobile users with constrained computational resources has become paramount. Addressing this, our paper delves into a collaborative framework for model training where user data and model adapters are shared with servers to optimize performance. Within this framework, users initially update the first several layers of the adapters while freezing the other layers of them, leveraging their local datasets. Once this step is complete, these partially trained parameters are transmitted to servers. The servers, equipped with more robust computational capabilities, then update the subsequent layers. After this training, they send the enhanced parameters back to the users. This collaborative training approach ensures that mobile users with limited computational capacities can still benefit from advanced LLM services without being burdened by exhaustive computations. Central to our methodology is the DASHF algorithm, which encapsulates the Dinkelbach algorithm, alternating optimization, semidefinite relaxation (SDR), the Hungarian method, and a pioneering fractional programming technique from our recent IEEE JSAC paper "Human-Centric Resource Allocation in the Metaverse over Wireless Communications". The crux of DASHF is its capability to reformulate an optimization problem as Quadratically Constrained Quadratic Programming (QCQP) via meticulously crafted transformations, making it solvable by SDR and the Hungarian algorithm. Through extensive simulations, we demonstrate the effectiveness of the DASHF algorithm, offering significant insights for the advancement of collaborative LLM service deployments.
Abstract:Unmanned aerial vehicles (UAVs) are promising for providing communication services due to their advantages in cost and mobility, especially in the context of the emerging Metaverse and Internet of Things (IoT). This paper considers a UAV-assisted Metaverse network, in which UAVs extend the coverage of the base station (BS) to collect the Metaverse data generated at roadside units (RSUs). Specifically, to improve the data collection efficiency, resource allocation and trajectory control are integrated into the system model. The time-dependent nature of the optimization problem makes it non-trivial to be solved by traditional convex optimization methods. Based on the proposed UAV-assisted Metaverse network system model, we design a hybrid framework with reinforcement learning and convex optimization to {cooperatively} solve the time-sequential optimization problem. Simulation results show that the proposed framework is able to reduce the mission completion time with a given transmission power resource.