Abstract:Visual Emotion Analysis (VEA) is attracting increasing attention. One of the biggest challenges of VEA is to bridge the affective gap between visual clues in a picture and the emotion expressed by the picture. As the granularity of emotions increases, the affective gap increases as well. Existing deep approaches try to bridge the gap by directly learning discrimination among emotions globally in one shot without considering the hierarchical relationship among emotions at different affective levels and the affective level of emotions to be classified. In this paper, we present the Multi-level Dependent Attention Network (MDAN) with two branches, to leverage the emotion hierarchy and the correlation between different affective levels and semantic levels. The bottom-up branch directly learns emotions at the highest affective level and strictly follows the emotion hierarchy while predicting emotions at lower affective levels. In contrast, the top-down branch attempt to disentangle the affective gap by one-to-one mapping between semantic levels and affective levels, namely, Affective Semantic Mapping. At each semantic level, a local classifier learns discrimination among emotions at the corresponding affective level. Finally, We integrate global learning and local learning into a unified deep framework and optimize the network simultaneously. Moreover, to properly extract and leverage channel dependencies and spatial attention while disentangling the affective gap, we carefully designed two attention modules: the Multi-head Cross Channel Attention module and the Level-dependent Class Activation Map module. Finally, the proposed deep framework obtains new state-of-the-art performance on six VEA benchmarks, where it outperforms existing state-of-the-art methods by a large margin, e.g., +3.85% on the WEBEmo dataset at 25 classes classification accuracy.
Abstract:Deep network pruning is an effective method to reduce the storage and computation cost of deep neural networks when applying them to resource-limited devices. Among many pruning granularities, neuron level pruning will remove redundant neurons and filters in the model and result in thinner networks. In this paper, we propose a gradually global pruning scheme for neuron level pruning. In each pruning step, a small percent of neurons were selected and dropped across all layers in the model. We also propose a simple method to eliminate the biases in evaluating the importance of neurons to make the scheme feasible. Compared with layer-wise pruning scheme, our scheme avoid the difficulty in determining the redundancy in each layer and is more effective for deep networks. Our scheme would automatically find a thinner sub-network in original network under a given performance.
Abstract:Face photo synthesis from simple line drawing is a one-to-many task as simple line drawing merely contains the contour of human face. Previous exemplar-based methods are over-dependent on the datasets and are hard to generalize to complicated natural scenes. Recently, several works utilize deep neural networks to increase the generalization, but they are still limited in the controllability of the users. In this paper, we propose a deep generative model to synthesize face photo from simple line drawing controlled by face attributes such as hair color and complexion. In order to maximize the controllability of face attributes, an attribute-disentangled variational auto-encoder (AD-VAE) is firstly introduced to learn latent representations disentangled with respect to specified attributes. Then we conduct photo synthesis from simple line drawing based on AD-VAE. Experiments show that our model can well disentangle the variations of attributes from other variations of face photos and synthesize detailed photorealistic face images with desired attributes. Regarding background and illumination as the style and human face as the content, we can also synthesize face photos with the target style of a style photo.
Abstract:Many works have concentrated on visualizing and understanding the inner mechanism of convolutional neural networks (CNNs) by generating images that activate some specific neurons, which is called deep visualization. However, it is still unclear what the filters extract from images intuitively. In this paper, we propose a modified code inversion algorithm, called feature map inversion, to understand the function of filter of interest in CNNs. We reveal that every filter extracts a specific texture. The texture from higher layer contains more colours and more intricate structures. We also demonstrate that style of images could be a combination of these texture primitives. Two methods are proposed to reallocate energy distribution of feature maps randomly and purposefully. Then, we inverse the modified code and generate images of diverse styles. With these results, we provide an explanation about why Gram matrix of feature maps \cite{Gatys_2016_CVPR} could represent image style.