Abstract:Reinforcement learning is a powerful technique for learning from trial and error, but it often requires a large number of interactions to achieve good performance. In some domains, such as sparse-reward tasks, an oracle that can provide useful feedback or guidance to the agent during the learning process is really of great importance. However, querying the oracle too frequently may be costly or impractical, and the oracle may not always have a clear answer for every situation. Therefore, we propose a novel method for interacting with the oracle in a selective and efficient way, using a retrieval-based approach. We assume that the interaction can be modeled as a sequence of templated questions and answers, and that there is a large corpus of previous interactions available. We use a neural network to encode the current state of the agent and the oracle, and retrieve the most relevant question from the corpus to ask the oracle. We then use the oracle's answer to update the agent's policy and value function. We evaluate our method on an object manipulation task. We show that our method can significantly improve the efficiency of RL by reducing the number of interactions needed to reach a certain level of performance, compared to baselines that do not use the oracle or use it in a naive way.
Abstract:Despite the dramatic success in image generation, Generative Adversarial Networks (GANs) still face great challenges in synthesizing sequences of discrete elements, in particular human language. The difficulty in generator training arises from the limited representation capacity and uninformative learning signals obtained from the discriminator. In this work, we (1) first empirically show that the mixture-of-experts approach is able to enhance the representation capacity of the generator for language GANs and (2) harness the Feature Statistics Alignment (FSA) paradigm to render fine-grained learning signals to advance the generator training. Specifically, FSA forces the mean statistics of the distribution of fake data to approach that of real samples as close as possible in the finite-dimensional feature space. Empirical study on synthetic and real benchmarks shows the superior performance in quantitative evaluation and demonstrates the effectiveness of our approach to adversarial text generation.
Abstract:With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
Abstract:In recent years, reinforcement learning has faced several challenges in the multi-agent domain, such as the credit assignment issue. Value function factorization emerges as a promising way to handle the credit assignment issue under the centralized training with decentralized execution (CTDE) paradigm. However, existing value function factorization methods cannot deal with ad-hoc cooperation, that is, adapting to new configurations of teammates at test time. Specifically, these methods do not explicitly utilize the relationship between agents and cannot adapt to different sizes of inputs. To address these limitations, we propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios. RACA takes advantage of a graph-based relation encoder to encode the topological structure between agents. Furthermore, RACA utilizes an attention-based observation abstraction mechanism that can generalize to an arbitrary number of teammates with a fixed number of parameters. Experiments demonstrate that our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
Abstract:With breakthrough of AlphaGo, AI in human-computer game has become a very hot topic attracting researchers all around the world, which usually serves as an effective standard for testing artificial intelligence. Various game AI systems (AIs) have been developed such as Libratus, OpenAI Five and AlphaStar, beating professional human players. In this paper, we survey recent successful game AIs, covering board game AIs, card game AIs, first-person shooting game AIs and real time strategy game AIs. Through this survey, we 1) compare the main difficulties among different kinds of games for the intelligent decision making field ; 2) illustrate the mainstream frameworks and techniques for developing professional level AIs; 3) raise the challenges or drawbacks in the current AIs for intelligent decision making; and 4) try to propose future trends in the games and intelligent decision making techniques. Finally, we hope this brief review can provide an introduction for beginners, inspire insights for researchers in the filed of AI in games.
Abstract:Model-based reinforcement learning (RL) is more sample efficient than model-free RL by using imaginary trajectories generated by the learned dynamics model. When the model is inaccurate or biased, imaginary trajectories may be deleterious for training the action-value and policy functions. To alleviate such problem, this paper proposes to adaptively reweight the imaginary transitions, so as to reduce the negative effects of poorly generated trajectories. More specifically, we evaluate the effect of an imaginary transition by calculating the change of the loss computed on the real samples when we use the transition to train the action-value and policy functions. Based on this evaluation criterion, we construct the idea of reweighting each imaginary transition by a well-designed meta-gradient algorithm. Extensive experimental results demonstrate that our method outperforms state-of-the-art model-based and model-free RL algorithms on multiple tasks. Visualization of our changing weights further validates the necessity of utilizing reweight scheme.
Abstract:Model-based reinforcement learning is a framework in which an agent learns an environment model, makes planning and decision-making in this model, and finally interacts with the real environment. Model-based reinforcement learning has high sample efficiency compared with model-free reinforcement learning, and shows great potential in the real-world application. However, model-based reinforcement learning has been plagued by dynamics bottleneck. Dynamics bottleneck is the phenomenon that when the timestep to interact with the environment increases, the reward of the agent falls into the local optimum instead of increasing. In this paper, we analyze and explain how the coupling relationship between model and policy causes the dynamics bottleneck and shows improving the exploration ability of the agent can alleviate this issue. We then propose a new planning algorithm called Maximum Entropy Cross-Entropy Method (MECEM). MECEM can improve the agent's exploration ability by maximizing the distribution of action entropy in the planning process. We conduct experiments on fourteen well-recognized benchmark environments such as HalfCheetah, Ant and Swimmer. The results verify that our approach obtains the state-of-the-art performance on eleven benchmark environments and can effectively alleviate dynamics bottleneck on HalfCheetah, Ant and Walker2D.
Abstract:In this paper, we tackle for the first time, the problem of self-supervised representation learning for free-hand sketches. This importantly addresses a common problem faced by the sketch community -- that annotated supervisory data are difficult to obtain. This problem is very challenging in that sketches are highly abstract and subject to different drawing styles, making existing solutions tailored for photos unsuitable. Key for the success of our self-supervised learning paradigm lies with our sketch-specific designs: (i) we propose a set of pretext tasks specifically designed for sketches that mimic different drawing styles, and (ii) we further exploit the use of a textual convolution network (TCN) in a dual-branch architecture for sketch feature learning, as means to accommodate the sequential stroke nature of sketches. We demonstrate the superiority of our sketch-specific designs through two sketch-related applications (retrieval and recognition) on a million-scale sketch dataset, and show that the proposed approach outperforms the state-of-the-art unsupervised representation learning methods, and significantly narrows the performance gap between with supervised representation learning.
Abstract:Sketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic renderings of the real world with highly abstract. Therefore, matching sketch and photo directly using low-level visual clues are unsufficient, since a common low-level subspace that traverses semantically across the two modalities is non-trivial to establish. Most existing SBIR studies do not directly tackle this cross-modal problem. This naturally motivates us to explore the effectiveness of cross-modal retrieval methods in SBIR, which have been applied in the image-text matching successfully. In this paper, we introduce and compare a series of state-of-the-art cross-modal subspace learning methods and benchmark them on two recently released fine-grained SBIR datasets. Through thorough examination of the experimental results, we have demonstrated that the subspace learning can effectively model the sketch-photo domain-gap. In addition we draw a few key insights to drive future research.
Abstract:In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.