Abstract:Federated learning (FL) is revolutionizing how we learn from data. With its growing popularity, it is now being used in many safety-critical domains such as autonomous vehicles and healthcare. Since thousands of participants can contribute in this collaborative setting, it is, however, challenging to ensure security and reliability of such systems. This highlights the need to design FL systems that are secure and robust against malicious participants' actions while also ensuring high utility, privacy of local data, and efficiency. In this paper, we propose a novel FL framework dubbed as FLShield that utilizes benign data from FL participants to validate the local models before taking them into account for generating the global model. This is in stark contrast with existing defenses relying on server's access to clean datasets -- an assumption often impractical in real-life scenarios and conflicting with the fundamentals of FL. We conduct extensive experiments to evaluate our FLShield framework in different settings and demonstrate its effectiveness in thwarting various types of poisoning and backdoor attacks including a defense-aware one. FLShield also preserves privacy of local data against gradient inversion attacks.
Abstract:The loss function is a key component in deep learning models. A commonly used loss function for classification is the cross entropy loss, which is a simple yet effective application of information theory for classification problems. Based on this loss, many other loss functions have been proposed,~\emph{e.g.}, by adding intra-class and inter-class constraints to enhance the discriminative ability of the learned features. However, these loss functions fail to consider the connections between the feature distribution and the model structure. Aiming at addressing this problem, we propose a channel correlation loss (CC-Loss) that is able to constrain the specific relations between classes and channels as well as maintain the intra-class and the inter-class separability. CC-Loss uses a channel attention module to generate channel attention of features for each sample in the training stage. Next, an Euclidean distance matrix is calculated to make the channel attention vectors associated with the same class become identical and to increase the difference between different classes. Finally, we obtain a feature embedding with good intra-class compactness and inter-class separability.Experimental results show that two different backbone models trained with the proposed CC-Loss outperform the state-of-the-art loss functions on three image classification datasets.
Abstract:In this paper, we tackle for the first time, the problem of self-supervised representation learning for free-hand sketches. This importantly addresses a common problem faced by the sketch community -- that annotated supervisory data are difficult to obtain. This problem is very challenging in that sketches are highly abstract and subject to different drawing styles, making existing solutions tailored for photos unsuitable. Key for the success of our self-supervised learning paradigm lies with our sketch-specific designs: (i) we propose a set of pretext tasks specifically designed for sketches that mimic different drawing styles, and (ii) we further exploit the use of a textual convolution network (TCN) in a dual-branch architecture for sketch feature learning, as means to accommodate the sequential stroke nature of sketches. We demonstrate the superiority of our sketch-specific designs through two sketch-related applications (retrieval and recognition) on a million-scale sketch dataset, and show that the proposed approach outperforms the state-of-the-art unsupervised representation learning methods, and significantly narrows the performance gap between with supervised representation learning.
Abstract:This paper investigates to identify the requirement and the development of machine learning-based mobile big data analysis through discussing the insights of challenges in the mobile big data (MBD). Furthermore, it reviews the state-of-the-art applications of data analysis in the area of MBD. Firstly, we introduce the development of MBD. Secondly, the frequently adopted methods of data analysis are reviewed. Three typical applications of MBD analysis, namely wireless channel modeling, human online and offline behavior analysis, and speech recognition in the internet of vehicles, are introduced respectively. Finally, we summarize the main challenges and future development directions of mobile big data analysis.