Dynamic positron emission tomography (PET) images can reveal the distribution of tracers in the organism and the dynamic processes involved in biochemical reactions, and it is widely used in clinical practice. Despite the high effectiveness of dynamic PET imaging in studying the kinetics and metabolic processes of radiotracers. Pro-longed scan times can cause discomfort for both patients and medical personnel. This study proposes a dynamic frame prediction method for dynamic PET imaging, reduc-ing dynamic PET scanning time by applying a multi-module deep learning framework composed of reversible and irreversible modules. The network can predict kinetic parameter images based on the early frames of dynamic PET images, and then generate complete dynamic PET images. In validation experiments with simulated data, our network demonstrated good predictive performance for kinetic parameters and was able to reconstruct high-quality dynamic PET images. Additionally, in clinical data experiments, the network exhibited good generalization performance and attached that the proposed method has promising clinical application prospects.