Abstract:There is a significant demand for indoor localization technology in smart buildings, and the most promising solution in this field is using RF sensors and fingerprinting-based methods that employ machine learning models trained on crowd-sourced user data gathered from IoT devices. However, this raises security and privacy issues in practice. Some researchers propose to use federated learning to partially overcome privacy problems, but there still remain security concerns, e.g., single-point failure and malicious attacks. In this paper, we propose a framework named DFLoc to achieve precise 3D localization tasks while considering the following two security concerns. Particularly, we design a specialized blockchain to decentralize the framework by distributing the tasks such as model distribution and aggregation which are handled by a central server to all clients in most previous works, to address the issue of the single-point failure for a reliable and accurate indoor localization system. Moreover, we introduce an updated model verification mechanism within the blockchain to alleviate the concern of malicious node attacks. Experimental results substantiate the framework's capacity to deliver accurate 3D location predictions and its superior resistance to the impacts of single-point failure and malicious attacks when compared to conventional centralized federated learning systems.
Abstract:In order to maintain stable grid operations, system monitoring and control processes require the computation of grid states (e.g. voltage magnitude and angles) at high granularity. It is necessary to infer these grid states from measurements generated by a limited number of sensors like phasor measurement units (PMUs) that can be subjected to delays and losses due to channel artefacts, and/or adversarial attacks (e.g. denial of service, jamming, etc.). We propose a novel graph signal processing (GSP) based algorithm to interpolate states of the entire grid from observations of a small number of grid measurements. It is a two-stage process, where first an underlying Hermitian graph is learnt empirically from existing grid datasets. Then, the graph is used to interpolate missing grid signal samples in linear time. With our proposal, we can effectively reconstruct grid signals with significantly smaller number of observations when compared to existing traditional approaches (e.g. state estimation). In contrast to existing GSP approaches, we do not require knowledge of the underlying grid structure and parameters and are able to guarantee fast spectral optimization. We demonstrate the computational efficacy and accuracy of our proposal via practical studies conducted on the IEEE 118 bus system.