Abstract:Test-Time Adaptation (TTA) aims to help pre-trained model bridge the gap between source and target datasets using only the pre-trained model and unlabelled test data. A key objective of TTA is to address domain shifts in test data caused by corruption, such as weather changes, noise, or sensor malfunctions. Multi-Modal Continual Test-Time Adaptation (MM-CTTA), an extension of TTA with better real-world applications, further allows pre-trained models to handle multi-modal inputs and adapt to continuously-changing target domains. MM-CTTA typically faces challenges including error accumulation, catastrophic forgetting, and reliability bias, with few existing approaches effectively addressing these issues in multi-modal corruption scenarios. In this paper, we propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA), for MM-CTTA tasks. We innovatively introduce analytic learning into TTA, using the Analytic Classifiers (ACs) to prevent model forgetting. Additionally, we develop Dynamic Selection Mechanism (DSM) and Soft Pseudo-label Strategy (SPS), which enable MDAA to dynamically filter reliable samples and integrate information from different modalities. Extensive experiments demonstrate that MDAA achieves state-of-the-art performance on MM-CTTA tasks while ensuring reliable model adaptation.
Abstract:During the early stages of respiratory virus outbreaks, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the efficient utilize of limited nasopharyngeal swabs for rapid and accurate screening is crucial for public health. In this study, we present a methodology that integrates attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with the adaptive iteratively reweighted penalized least squares (airPLS) preprocessing algorithm and a channel-wise attention-based partial least squares one-dimensional convolutional neural network (PLS-1D-CNN) model, enabling accurate screening of infected individuals within 10 minutes. Two cohorts of nasopharyngeal swab samples, comprising 126 and 112 samples from suspected SARS-CoV-2 Omicron variant cases, were collected at Beijing You'an Hospital for verification. Given that ATR-FTIR spectra are highly sensitive to variations in experimental conditions, which can affect their quality, we propose a biomolecular importance (BMI) evaluation method to assess signal quality across different conditions, validated by comparing BMI with PLS-GBM and PLS-RF results. For the ATR-FTIR signals in cohort 2, which exhibited a higher BMI, airPLS was utilized for signal preprocessing, followed by the application of the channel-wise attention-based PLS-1D-CNN model for screening. The experimental results demonstrate that our model outperforms recently reported methods in the field of respiratory virus spectrum detection, achieving a recognition screening accuracy of 96.48%, a sensitivity of 96.24%, a specificity of 97.14%, an F1-score of 96.12%, and an AUC of 0.99. It meets the World Health Organization (WHO) recommended criteria for an acceptable product: sensitivity of 95.00% or greater and specificity of 97.00% or greater for testing prior SARS-CoV-2 infection in moderate to high volume scenarios.
Abstract:Multiple object tracking (MOT) involves identifying multiple targets and assigning them corresponding IDs within a video sequence, where occlusions are often encountered. Recent methods address occlusions using appearance cues through online learning techniques to improve adaptivity or offline learning techniques to utilize temporal information from videos. However, most existing online learning-based MOT methods are unable to learn from all past tracking information to improve adaptivity on long-term occlusions while maintaining real-time tracking speed. On the other hand, temporal information-based offline learning methods maintain a long-term memory to store past tracking information, but this approach restricts them to use only local past information during tracking. To address these challenges, we propose a new MOT framework called the Feature Adaptive Continual-learning Tracker (FACT), which enables real-time tracking and feature learning for targets by utilizing all past tracking information. We demonstrate that the framework can be integrated with various state-of-the-art feature-based trackers, thereby improving their tracking ability. Specifically, we develop the feature adaptive continual-learning (FAC) module, a neural network that can be trained online to learn features adaptively using all past tracking information during tracking. Moreover, we also introduce a two-stage association module specifically designed for the proposed continual learning-based tracking. Extensive experiment results demonstrate that the proposed method achieves state-of-the-art online tracking performance on MOT17 and MOT20 benchmarks. The code will be released upon acceptance.
Abstract:Box-free model watermarking is an emerging technique to safeguard the intellectual property of deep learning models, particularly those for low-level image processing tasks. Existing works have verified and improved its effectiveness in several aspects. However, in this paper, we reveal that box-free model watermarking is prone to removal attacks, even under the real-world threat model such that the protected model and the watermark extractor are in black boxes. Under this setting, we carry out three studies. 1) We develop an extractor-gradient-guided (EGG) remover and show its effectiveness when the extractor uses ReLU activation only. 2) More generally, for an unknown extractor, we leverage adversarial attacks and design the EGG remover based on the estimated gradients. 3) Under the most stringent condition that the extractor is inaccessible, we design a transferable remover based on a set of private proxy models. In all cases, the proposed removers can successfully remove embedded watermarks while preserving the quality of the processed images, and we also demonstrate that the EGG remover can even replace the watermarks. Extensive experimental results verify the effectiveness and generalizability of the proposed attacks, revealing the vulnerabilities of the existing box-free methods and calling for further research.
Abstract:Class-incremental learning (CIL) under an exemplar-free constraint has presented a significant challenge. Existing methods adhering to this constraint are prone to catastrophic forgetting, far more so than replay-based techniques that retain access to past samples. In this paper, to solve the exemplar-free CIL problem, we propose a Dual-Stream Analytic Learning (DS-AL) approach. The DS-AL contains a main stream offering an analytical (i.e., closed-form) linear solution, and a compensation stream improving the inherent under-fitting limitation due to adopting linear mapping. The main stream redefines the CIL problem into a Concatenated Recursive Least Squares (C-RLS) task, allowing an equivalence between the CIL and its joint-learning counterpart. The compensation stream is governed by a Dual-Activation Compensation (DAC) module. This module re-activates the embedding with a different activation function from the main stream one, and seeks fitting compensation by projecting the embedding to the null space of the main stream's linear mapping. Empirical results demonstrate that the DS-AL, despite being an exemplar-free technique, delivers performance comparable with or better than that of replay-based methods across various datasets, including CIFAR-100, ImageNet-100 and ImageNet-Full. Additionally, the C-RLS' equivalent property allows the DS-AL to execute CIL in a phase-invariant manner. This is evidenced by a never-before-seen 500-phase CIL ImageNet task, which performs on a level identical to a 5-phase one. Our codes are available at https://github.com/ZHUANGHP/Analytic-continual-learning.
Abstract:Class-incremental learning (CIL) learns a classification model with training data of different classes arising progressively. Existing CIL either suffers from serious accuracy loss due to catastrophic forgetting, or invades data privacy by revisiting used exemplars. Inspired by linear learning formulations, we propose an analytic class-incremental learning (ACIL) with absolute memorization of past knowledge while avoiding breaching of data privacy (i.e., without storing historical data). The absolute memorization is demonstrated in the sense that class-incremental learning using ACIL given present data would give identical results to that from its joint-learning counterpart which consumes both present and historical samples. This equality is theoretically validated. Data privacy is ensured since no historical data are involved during the learning process. Empirical validations demonstrate ACIL's competitive accuracy performance with near-identical results for various incremental task settings (e.g., 5-50 phases). This also allows ACIL to outperform the state-of-the-art methods for large-phase scenarios (e.g., 25 and 50 phases).
Abstract:Pattern classification with compact representation is an important component in machine intelligence. In this work, an analytic bridge solution is proposed for compressive classification. The proposal has been based upon solving a penalized error formulation utilizing an approximated $\ell_p$-norm. The solution comes in a primal form for over-determined systems and in a dual form for under-determined systems. While the primal form is suitable for problems of low dimension with large data samples, the dual form is suitable for problems of high dimension but with a small number of data samples. The solution has also been extended for problems with multiple classification outputs. Numerical studies based on simulated and real-world data validated the effectiveness of the proposed solution.
Abstract:Training convolutional neural networks (CNNs) with back-propagation (BP) is time-consuming and resource-intensive particularly in view of the need to visit the dataset multiple times. In contrast, analytic learning attempts to obtain the weights in one epoch. However, existing attempts to analytic learning considered only the multilayer perceptron (MLP). In this article, we propose an analytic convolutional neural network learning (ACnnL). Theoretically we show that ACnnL builds a closed-form solution similar to its MLP counterpart, but differs in their regularization constraints. Consequently, we are able to answer to a certain extent why CNNs usually generalize better than MLPs from the implicit regularization point of view. The ACnnL is validated by conducting classification tasks on several benchmark datasets. It is encouraging that the ACnnL trains CNNs in a significantly fast manner with reasonably close prediction accuracies to those using BP. Moreover, our experiments disclose a unique advantage of ACnnL under the small-sample scenario when training data are scarce or expensive.
Abstract:Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data points. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building a $n\times n$ graph, where $n$ is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K-means clustering. Moreover, a model to process multi-view data is also proposed, which is linear scaled with respect to $n$. Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
Abstract:Decoupled learning is a branch of model parallelism which parallelizes the training of a network by splitting it depth-wise into multiple modules. Techniques from decoupled learning usually lead to stale gradient effect because of their asynchronous implementation, thereby causing performance degradation. In this paper, we propose an accumulated decoupled learning (ADL) which incorporates the gradient accumulation technique to mitigate the stale gradient effect. We give both theoretical and empirical evidences regarding how the gradient staleness can be reduced. We prove that the proposed method can converge to critical points, i.e., the gradients converge to 0, in spite of its asynchronous nature. Empirical validation is provided by training deep convolutional neural networks to perform classification tasks on CIFAR-10 and ImageNet datasets. The ADL is shown to outperform several state-of-the-arts in the classification tasks, and is the fastest among the compared methods.