Abstract:In the field of autonomous driving, even a meticulously trained model can encounter failures when faced with unfamiliar sceanrios. One of these scenarios can be formulated as an online continual learning (OCL) problem. That is, data come in an online fashion, and models are updated according to these streaming data. Two major OCL challenges are catastrophic forgetting and data imbalance. To address these challenges, in this paper, we propose an Analytic Exemplar-Free Online Continual Learning (AEF-OCL). The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network. It solves the OCL problem by recursively calculating the analytical solution, ensuring an equalization between the continual learning and its joint-learning counterpart, and works without the need to save any used samples (i.e., exemplar-free). Additionally, we introduce a Pseudo-Features Generator (PFG) module that recursively estimates the deviation of real features. The PFG generates offset pseudo-features following a normal distribution, thereby addressing the data imbalance issue. Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset. Source code is available at https://github.com/ZHUANGHP/Analytic-continual-learning.
Abstract:In this paper, we introduce analytic federated learning (AFL), a new training paradigm that brings analytical (i.e., closed-form) solutions to the federated learning (FL) community. Our AFL draws inspiration from analytic learning -- a gradient-free technique that trains neural networks with analytical solutions in one epoch. In the local client training stage, the AFL facilitates a one-epoch training, eliminating the necessity for multi-epoch updates. In the aggregation stage, we derive an absolute aggregation (AA) law. This AA law allows a single-round aggregation, removing the need for multiple aggregation rounds. More importantly, the AFL exhibits a \textit{weight-invariant} property, meaning that regardless of how the full dataset is distributed among clients, the aggregated result remains identical. This could spawn various potentials, such as data heterogeneity invariance, client-number invariance, absolute convergence, and being hyperparameter-free (our AFL is the first hyperparameter-free method in FL history). We conduct experiments across various FL settings including extremely non-IID ones, and scenarios with a large number of clients (e.g., $\ge 1000$). In all these settings, our AFL constantly performs competitively while existing FL techniques encounter various obstacles. Code is available at \url{https://github.com/ZHUANGHP/Analytic-federated-learning}
Abstract:Class-incremental learning (CIL) under an exemplar-free constraint has presented a significant challenge. Existing methods adhering to this constraint are prone to catastrophic forgetting, far more so than replay-based techniques that retain access to past samples. In this paper, to solve the exemplar-free CIL problem, we propose a Dual-Stream Analytic Learning (DS-AL) approach. The DS-AL contains a main stream offering an analytical (i.e., closed-form) linear solution, and a compensation stream improving the inherent under-fitting limitation due to adopting linear mapping. The main stream redefines the CIL problem into a Concatenated Recursive Least Squares (C-RLS) task, allowing an equivalence between the CIL and its joint-learning counterpart. The compensation stream is governed by a Dual-Activation Compensation (DAC) module. This module re-activates the embedding with a different activation function from the main stream one, and seeks fitting compensation by projecting the embedding to the null space of the main stream's linear mapping. Empirical results demonstrate that the DS-AL, despite being an exemplar-free technique, delivers performance comparable with or better than that of replay-based methods across various datasets, including CIFAR-100, ImageNet-100 and ImageNet-Full. Additionally, the C-RLS' equivalent property allows the DS-AL to execute CIL in a phase-invariant manner. This is evidenced by a never-before-seen 500-phase CIL ImageNet task, which performs on a level identical to a 5-phase one. Our codes are available at https://github.com/ZHUANGHP/Analytic-continual-learning.
Abstract:Class incremental learning (CIL) trains a network on sequential tasks with separated categories but suffers from catastrophic forgetting, where models quickly lose previously learned knowledge when acquiring new tasks. The generalized CIL (GCIL) aims to address the CIL problem in a more real-world scenario, where incoming data have mixed data categories and unknown sample size distribution, leading to intensified forgetting. Existing attempts for the GCIL either have poor performance, or invade data privacy by saving historical exemplars. To address this, in this paper, we propose an exemplar-free generalized analytic class incremental learning (G-ACIL). The G-ACIL adopts analytic learning (a gradient-free training technique), and delivers an analytical solution (i.e., closed-form) to the GCIL scenario. This solution is derived via decomposing the incoming data into exposed and unexposed classes, allowing an equivalence between the incremental learning and its joint training, i.e., the weight-invariant property. Such an equivalence is theoretically validated through matrix analysis tools, and hence contributes interpretability in GCIL. It is also empirically evidenced by experiments on various datasets and settings of GCIL. The results show that the G-ACIL exhibits leading performance with high robustness compared with existing competitive GCIL methods. Codes will be ready at https://github.com/ZHUANGHP/Analytic-continual-learning.
Abstract:Online Class Incremental Learning (OCIL) aims to train the model in a task-by-task manner, where data arrive in mini-batches at a time while previous data are not accessible. A significant challenge is known as Catastrophic Forgetting, i.e., loss of the previous knowledge on old data. To address this, replay-based methods show competitive results but invade data privacy, while exemplar-free methods protect data privacy but struggle for accuracy. In this paper, we proposed an exemplar-free approach -- Analytic Online Class Incremental Learning (AOCIL). Instead of back-propagation, we design the Analytic Classifier (AC) updated by recursive least square, cooperating with a frozen backbone. AOCIL simultaneously achieves high accuracy, low resource consumption and data privacy protection. We conduct massive experiments on four existing benchmark datasets, and the results demonstrate the strong capability of handling OCIL scenarios. Codes will be ready.
Abstract:Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning without available historical data. Compared with its counterpart (replay-based CIL) that stores historical samples, the EFCIL suffers more from forgetting issues under the exemplar-free constraint. In this paper, inspired by the recently developed analytic learning (AL) based CIL, we propose a representation enhanced analytic learning (REAL) for EFCIL. The REAL constructs a dual-stream base pretraining (DS-BPT) and a representation enhancing distillation (RED) process to enhance the representation of the extractor. The DS-BPT pretrains model in streams of both supervised learning and self-supervised contrastive learning (SSCL) for base knowledge extraction. The RED process distills the supervised knowledge to the SSCL pretrained backbone and facilitates a subsequent AL-basd CIL that converts the CIL to a recursive least-square problem. Our method addresses the issue of insufficient discriminability in representations of unseen data caused by a frozen backbone in the existing AL-based CIL. Empirical results on various datasets including CIFAR-100, ImageNet-100 and ImageNet-1k, demonstrate that our REAL outperforms the state-of-the-arts in EFCIL, and achieves comparable or even more superior performance compared with the replay-based methods.