Abstract:Vision-and-language Navigation (VLN) task requires an embodied agent to navigate to a remote location following a natural language instruction. Previous methods usually adopt a sequence model (e.g., Transformer and LSTM) as the navigator. In such a paradigm, the sequence model predicts action at each step through a maintained navigation state, which is generally represented as a one-dimensional vector. However, the crucial navigation clues (i.e., object-level environment layout) for embodied navigation task is discarded since the maintained vector is essentially unstructured. In this paper, we propose a novel Structured state-Evolution (SEvol) model to effectively maintain the environment layout clues for VLN. Specifically, we utilise the graph-based feature to represent the navigation state instead of the vector-based state. Accordingly, we devise a Reinforced Layout clues Miner (RLM) to mine and detect the most crucial layout graph for long-term navigation via a customised reinforcement learning strategy. Moreover, the Structured Evolving Module (SEM) is proposed to maintain the structured graph-based state during navigation, where the state is gradually evolved to learn the object-level spatial-temporal relationship. The experiments on the R2R and R4R datasets show that the proposed SEvol model improves VLN models' performance by large margins, e.g., +3% absolute SPL accuracy for NvEM and +8% for EnvDrop on the R2R test set.
Abstract:Recent researches show that pre-trained models such as BERT (Devlin et al., 2019) are beneficial for Chinese Word Segmentation tasks. However, existing approaches usually finetune pre-trained models directly on a separate downstream Chinese Word Segmentation corpus. These recent methods don't fully utilize the prior knowledge of existing segmentation corpora, and don't regard the discrepancy between the pre-training tasks and the downstream Chinese Word Segmentation tasks. In this work, we propose a Pre-Trained Model for Chinese Word Segmentation, which can be abbreviated as PTM-CWS. PTM-CWS model employs a unified architecture for different segmentation criteria, and is pre-trained on a joint multi-criteria corpus with meta learning algorithm. Empirical results show that our PTM-CWS model can utilize the existing prior segmentation knowledge, reduce the discrepancy between the pre-training tasks and the downstream Chinese Word Segmentation tasks, and achieve new state-of-the-art performance on twelve Chinese Word Segmentation corpora.
Abstract:Multi-Criteria Chinese Word Segmentation (MCCWS) aims at finding word boundaries in a Chinese sentence composed of continuous characters while multiple segmentation criteria exist. The unified framework has been widely used in MCCWS and shows its effectiveness. Besides, the pre-trained BERT language model has been also introduced into the MCCWS task in a multi-task learning framework. In this paper, we combine the superiority of the unified framework and pretrained language model, and propose a unified MCCWS model based on BERT. Moreover, we augment the unified BERT-based MCCWS model with the bigram features and an auxiliary criterion classification task. Experiments on eight datasets with diverse criteria demonstrate that our methods could achieve new state-of-the-art results for MCCWS.