Abstract:Previous studies on music style transfer have mainly focused on one-to-one style conversion, which is relatively limited. When considering the conversion between multiple styles, previous methods required designing multiple modes to disentangle the complex style of the music, resulting in large computational costs and slow audio generation. The existing music style transfer methods generate spectrograms with artifacts, leading to significant noise in the generated audio. To address these issues, this study proposes a music style transfer framework based on diffusion models (DM) and uses spectrogram-based methods to achieve multi-to-multi music style transfer. The GuideDiff method is used to restore spectrograms to high-fidelity audio, accelerating audio generation speed and reducing noise in the generated audio. Experimental results show that our model has good performance in multi-mode music style transfer compared to the baseline and can generate high-quality audio in real-time on consumer-grade GPUs.
Abstract:This study discusses a new method combining image steganography technology with Natural Language Processing (NLP) large models, aimed at improving the accuracy and robustness of extracting steganographic text. Traditional Least Significant Bit (LSB) steganography techniques face challenges in accuracy and robustness of information extraction when dealing with complex character encoding, such as Chinese characters. To address this issue, this study proposes an innovative LSB-NLP hybrid framework. This framework integrates the advanced capabilities of NLP large models, such as error detection, correction, and semantic consistency analysis, as well as information reconstruction techniques, thereby significantly enhancing the robustness of steganographic text extraction. Experimental results show that the LSB-NLP hybrid framework excels in improving the extraction accuracy of steganographic text, especially in handling Chinese characters. The findings of this study not only confirm the effectiveness of combining image steganography technology and NLP large models but also propose new ideas for research and application in the field of information hiding. The successful implementation of this interdisciplinary approach demonstrates the great potential of integrating image steganography technology with natural language processing technology in solving complex information processing problems.