Abstract:Despite advances in indoor 3D scene layout generation, synthesizing scenes with dense object arrangements remains challenging. Existing methods primarily focus on large furniture while neglecting smaller objects, resulting in unrealistically empty scenes. Those that place small objects typically do not honor arrangement specifications, resulting in largely random placement not following the text description. We present HSM, a hierarchical framework for indoor scene generation with dense object arrangements across spatial scales. Indoor scenes are inherently hierarchical, with surfaces supporting objects at different scales, from large furniture on floors to smaller objects on tables and shelves. HSM embraces this hierarchy and exploits recurring cross-scale spatial patterns to generate complex and realistic indoor scenes in a unified manner. Our experiments show that HSM outperforms existing methods by generating scenes that are more realistic and better conform to user input across room types and spatial configurations.
Abstract:Despite recent advances in text-conditioned 3D indoor scene generation, there remain gaps in the evaluation of these methods. Existing metrics primarily assess the realism of generated scenes by comparing them to a set of ground-truth scenes, often overlooking alignment with the input text - a critical factor in determining how effectively a method meets user requirements. We present SceneEval, an evaluation framework designed to address this limitation. SceneEval includes metrics for both explicit user requirements, such as the presence of specific objects and their attributes described in the input text, and implicit expectations, like the absence of object collisions, providing a comprehensive assessment of scene quality. To facilitate evaluation, we introduce SceneEval-100, a dataset of scene descriptions with annotated ground-truth scene properties. We evaluate recent scene generation methods using SceneEval and demonstrate its ability to provide detailed assessments of the generated scenes, highlighting strengths and areas for improvement across multiple dimensions. Our results show that current methods struggle at generating scenes that meet user requirements, underscoring the need for further research in this direction.
Abstract:Data driven and autoregressive indoor scene synthesis systems generate indoor scenes automatically by suggesting and then placing objects one at a time. Empirical observations show that current systems tend to produce incomplete next object location distributions. We introduce a system which addresses this problem. We design a Domain Specific Language (DSL) that specifies functional constraints. Programs from our language take as input a partial scene and object to place. Upon execution they predict possible object placements. We design a generative model which writes these programs automatically. Available 3D scene datasets do not contain programs to train on, so we build upon previous work in unsupervised program induction to introduce a new program bootstrapping algorithm. In order to quantify our empirical observations we introduce a new evaluation procedure which captures how well a system models per-object location distributions. We ask human annotators to label all the possible places an object can go in a scene and show that our system produces per-object location distributions more consistent with human annotators. Our system also generates indoor scenes of comparable quality to previous systems and while previous systems degrade in performance when training data is sparse, our system does not degrade to the same degree.
Abstract:Reconstructing structured 3D scenes from RGB images using CAD objects unlocks efficient and compact scene representations that maintain compositionality and interactability. Existing works propose training-heavy methods relying on either expensive yet inaccurate real-world annotations or controllable yet monotonous synthetic data that do not generalize well to unseen objects or domains. We present Diorama, the first zero-shot open-world system that holistically models 3D scenes from single-view RGB observations without requiring end-to-end training or human annotations. We show the feasibility of our approach by decomposing the problem into subtasks and introduce robust, generalizable solutions to each: architecture reconstruction, 3D shape retrieval, object pose estimation, and scene layout optimization. We evaluate our system on both synthetic and real-world data to show we significantly outperform baselines from prior work. We also demonstrate generalization to internet images and the text-to-scene task.
Abstract:We address the challenge of creating 3D assets for household articulated objects from a single image. Prior work on articulated object creation either requires multi-view multi-state input, or only allows coarse control over the generation process. These limitations hinder the scalability and practicality for articulated object modeling. In this work, we propose a method to generate articulated objects from a single image. Observing the object in resting state from an arbitrary view, our method generates an articulated object that is visually consistent with the input image. To capture the ambiguity in part shape and motion posed by a single view of the object, we design a diffusion model that learns the plausible variations of objects in terms of geometry and kinematics. To tackle the complexity of generating structured data with attributes in multiple domains, we design a pipeline that produces articulated objects from high-level structure to geometric details in a coarse-to-fine manner, where we use a part connectivity graph and part abstraction as proxies. Our experiments show that our method outperforms the state-of-the-art in articulated object creation by a large margin in terms of the generated object realism, resemblance to the input image, and reconstruction quality.
Abstract:Despite much progress in large 3D datasets there are currently few interactive 3D object datasets, and their scale is limited due to the manual effort required in their construction. We introduce the static to openable (S2O) task which creates interactive articulated 3D objects from static counterparts through openable part detection, motion prediction, and interior geometry completion. We formulate a unified framework to tackle this task, and curate a challenging dataset of openable 3D objects that serves as a test bed for systematic evaluation. Our experiments benchmark methods from prior work and simple yet effective heuristics for the S2O task. We find that turning static 3D objects into interactively openable counterparts is possible but that all methods struggle to generalize to realistic settings of the task, and we highlight promising future work directions.
Abstract:3D modeling of articulated objects is a research problem within computer vision, graphics, and robotics. Its objective is to understand the shape and motion of the articulated components, represent the geometry and mobility of object parts, and create realistic models that reflect articulated objects in the real world. This survey provides a comprehensive overview of the current state-of-the-art in 3D modeling of articulated objects, with a specific focus on the task of articulated part perception and articulated object creation (reconstruction and generation). We systematically review and discuss the relevant literature from two perspectives: geometry processing and articulation modeling. Through this survey, we highlight the substantial progress made in these areas, outline the ongoing challenges, and identify gaps for future research. Our survey aims to serve as a foundational reference for researchers and practitioners in computer vision and graphics, offering insights into the complexities of articulated object modeling.
Abstract:Recent years have seen an explosion of work and interest in text-to-3D shape generation. Much of the progress is driven by advances in 3D representations, large-scale pretraining and representation learning for text and image data enabling generative AI models, and differentiable rendering. Computational systems that can perform text-to-3D shape generation have captivated the popular imagination as they enable non-expert users to easily create 3D content directly from text. However, there are still many limitations and challenges remaining in this problem space. In this state-of-the-art report, we provide a survey of the underlying technology and methods enabling text-to-3D shape generation to summarize the background literature. We then derive a systematic categorization of recent work on text-to-3D shape generation based on the type of supervision data required. Finally, we discuss limitations of the existing categories of methods, and delineate promising directions for future work.
Abstract:We introduce the Reality-linked 3D Scenes (R3DS) dataset of synthetic 3D scenes mirroring the real-world scene arrangements from Matterport3D panoramas. Compared to prior work, R3DS has more complete and densely populated scenes with objects linked to real-world observations in panoramas. R3DS also provides an object support hierarchy, and matching object sets (e.g., same chairs around a dining table) for each scene. Overall, R3DS contains 19K objects represented by 3,784 distinct CAD models from over 100 object categories. We demonstrate the effectiveness of R3DS on the Panoramic Scene Understanding task. We find that: 1) training on R3DS enables better generalization; 2) support relation prediction trained with R3DS improves performance compared to heuristically calculated support; and 3) R3DS offers a challenging benchmark for future work on panoramic scene understanding.
Abstract:Single-view 3D shape retrieval is a challenging task that is increasingly important with the growth of available 3D data. Prior work that has studied this task has not focused on evaluating how realistic occlusions impact performance, and how shape retrieval methods generalize to scenarios where either the target 3D shape database contains unseen shapes, or the input image contains unseen objects. In this paper, we systematically evaluate single-view 3D shape retrieval along three different axes: the presence of object occlusions and truncations, generalization to unseen 3D shape data, and generalization to unseen objects in the input images. We standardize two existing datasets of real images and propose a dataset generation pipeline to produce a synthetic dataset of scenes with multiple objects exhibiting realistic occlusions. Our experiments show that training on occlusion-free data as was commonly done in prior work leads to significant performance degradation for inputs with occlusion. We find that that by first pretraining on our synthetic dataset with occlusions and then finetuning on real data, we can significantly outperform models from prior work and demonstrate robustness to both unseen 3D shapes and unseen objects.