Abstract:Wind direction forecasting plays a crucial role in optimizing wind energy production, but faces significant challenges due to the circular nature of directional data, error accumulation in multi-step forecasting, and complex meteorological interactions. This paper presents a novel model, WaveHiTS, which integrates wavelet transform with Neural Hierarchical Interpolation for Time Series to address these challenges. Our approach decomposes wind direction into U-V components, applies wavelet transform to capture multi-scale frequency patterns, and utilizes a hierarchical structure to model temporal dependencies at multiple scales, effectively mitigating error propagation. Experiments conducted on real-world meteorological data from Inner Mongolia, China demonstrate that WaveHiTS significantly outperforms deep learning models (RNN, LSTM, GRU), transformer-based approaches (TFT, Informer, iTransformer), and hybrid models (EMD-LSTM). The proposed model achieves RMSE values of approximately 19.2{\deg}-19.4{\deg} compared to 56{\deg}-64{\deg} for deep learning recurrent models, maintaining consistent accuracy across all forecasting steps up to 60 minutes ahead. Moreover, WaveHiTS demonstrates superior robustness with vector correlation coefficients (VCC) of 0.985-0.987 and hit rates of 88.5%-90.1%, substantially outperforming baseline models. Ablation studies confirm that each component-wavelet transform, hierarchical structure, and U-V decomposition-contributes meaningfully to overall performance. These improvements in wind direction nowcasting have significant implications for enhancing wind turbine yaw control efficiency and grid integration of wind energy.
Abstract:Despite the remarkable capabilities demonstrated by Graph Neural Networks (GNNs) in graph-related tasks, recent research has revealed the fairness vulnerabilities in GNNs when facing malicious adversarial attacks. However, all existing fairness attacks require manipulating the connectivity between existing nodes, which may be prohibited in reality. To this end, we introduce a Node Injection-based Fairness Attack (NIFA), exploring the vulnerabilities of GNN fairness in such a more realistic setting. In detail, NIFA first designs two insightful principles for node injection operations, namely the uncertainty-maximization principle and homophily-increase principle, and then optimizes injected nodes' feature matrix to further ensure the effectiveness of fairness attacks. Comprehensive experiments on three real-world datasets consistently demonstrate that NIFA can significantly undermine the fairness of mainstream GNNs, even including fairness-aware GNNs, by injecting merely 1% of nodes. We sincerely hope that our work can stimulate increasing attention from researchers on the vulnerability of GNN fairness, and encourage the development of corresponding defense mechanisms.