Abstract:Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
Abstract:Uncertainty estimation plays a pivotal role in ensuring the reliability of safety-critical human-AI interaction systems, particularly in the medical domain. However, a general method for quantifying the uncertainty of free-form answers has yet to be established in open-ended medical question-answering (QA) tasks, where irrelevant words and sequences with limited semantic information can be the primary source of uncertainty due to the presence of generative inequality. In this paper, we propose the Word-Sequence Entropy (WSE), which calibrates the uncertainty proportion at both the word and sequence levels according to the semantic relevance, with greater emphasis placed on keywords and more relevant sequences when performing uncertainty quantification. We compare WSE with 6 baseline methods on 5 free-form medical QA datasets, utilizing 7 "off-the-shelf" large language models (LLMs), and show that WSE exhibits superior performance on accurate uncertainty measurement under two standard criteria for correctness evaluation (e.g., WSE outperforms existing state-of-the-art method by 3.23% AUROC on the MedQA dataset). Additionally, in terms of the potential for real-world medical QA applications, we achieve a significant enhancement in the performance of LLMs when employing sequences with lower uncertainty, identified by WSE, as final answers (e.g., +6.36% accuracy improvement on the COVID-QA dataset), without requiring any additional task-specific fine-tuning or architectural modifications.
Abstract:The designers' tendency to adhere to a specific mental set and heavy emotional investment in their initial ideas often hinder their ability to innovate during the design thinking and ideation process. In the fashion industry, in particular, the growing diversity of customers' needs, the intense global competition, and the shrinking time-to-market (a.k.a., "fast fashion") further exacerbate this challenge for designers. Recent advances in deep generative models have created new possibilities to overcome the cognitive obstacles of designers through automated generation and/or editing of design concepts. This paper explores the capabilities of generative adversarial networks (GAN) for automated attribute-level editing of design concepts. Specifically, attribute GAN (AttGAN)---a generative model proven successful for attribute editing of human faces---is utilized for automated editing of the visual attributes of garments and tested on a large fashion dataset. The experiments support the hypothesized potentials of GAN for attribute-level editing of design concepts, and underscore several key limitations and research questions to be addressed in future work.