Abstract:Gravitational forces can induce deviations in body posture from desired configurations in multi-legged arboreal robot locomotion with low leg stiffness, affecting the contact angle between the swing leg's end-effector and the climbing surface during the gait cycle. The relationship between desired and actual foot positions is investigated here in a leg-stiffness-enhanced model under external forces, focusing on the challenge of unreliable end-effector attachment on climbing surfaces in such robots. Inspired by the difference in ceiling attachment postures of dead and living geckos, feedforward compensation of the stance phase legs is the key to solving this problem. A feedforward gravity compensation (FGC) strategy, complemented by leg coordination, is proposed to correct gravity-influenced body posture and improve adhesion stability by reducing body inclination. The efficacy of this strategy is validated using a quadrupedal climbing robot, EF-I, as the experimental platform. Experimental validation on an inverted surface (ceiling walking) highlight the benefits of the FGC strategy, demonstrating its role in enhancing stability and ensuring reliable end-effector attachment without external assistance. In the experiment, robots without FGC only completed in 3 out of 10 trials, while robots with FGC achieved a 100\% success rate in the same trials. The speed was substantially greater with FGC, achieved 9.2 mm/s in the trot gait. This underscores the proposed potential of FGC strategy in overcoming the challenges associated with inconsistent end-effector attachment in robots with low leg stiffness, thereby facilitating stable locomotion even at inverted body attitude.
Abstract:Recently, MLP-based models have become popular and attained significant performance on medium-scale datasets (e.g., ImageNet-1k). However, their direct applications to small-scale images remain limited. To address this issue, we design a new MLP-based network, namely Caterpillar, by proposing a key module of Shifted-Pillars-Concatenation (SPC) for exploiting the inductive bias of locality. SPC consists of two processes: (1) Pillars-Shift, which is to shift all pillars within an image along different directions to generate copies, and (2) Pillars-Concatenation, which is to capture the local information from discrete shift neighborhoods of the shifted copies. Extensive experiments demonstrate its strong scalability and superior performance on popular small-scale datasets, and the competitive performance on ImageNet-1K to recent state-of-the-art methods.