Abstract:To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on https://github.com/ucd-dare/CarDreamer.
Abstract:Video Action Counting (VAC) is crucial in analyzing sports, fitness, and everyday activities by quantifying repetitive actions in videos. However, traditional VAC methods have overlooked the complexity of action repetitions, such as interruptions and the variability in cycle duration. Our research addresses the shortfall by introducing a novel approach to VAC, called Irregular Video Action Counting (IVAC). IVAC prioritizes modeling irregular repetition patterns in videos, which we define through two primary aspects: Inter-cycle Consistency and Cycle-interval Inconsistency. Inter-cycle Consistency ensures homogeneity in the spatial-temporal representations of cycle segments, signifying action uniformity within cycles. Cycle-interval inconsistency highlights the importance of distinguishing between cycle segments and intervals based on their inherent content differences. To encapsulate these principles, we propose a new methodology that includes consistency and inconsistency modules, supported by a unique pull-push loss (P2L) mechanism. The IVAC-P2L model applies a pull loss to promote coherence among cycle segment features and a push loss to clearly distinguish features of cycle segments from interval segments. Empirical evaluations conducted on the RepCount dataset demonstrate that the IVAC-P2L model sets a new benchmark in VAC task performance. Furthermore, the model demonstrates exceptional adaptability and generalization across various video contents, outperforming existing models on two additional datasets, UCFRep and Countix, without the need for dataset-specific optimization. These results confirm the efficacy of our approach in addressing irregular repetitions in videos and pave the way for further advancements in video analysis and understanding.
Abstract:The prevalence of convolution neural networks (CNNs) and vision transformers (ViTs) has markedly revolutionized the area of single-image super-resolution (SISR). To further boost the SR performances, several techniques, such as residual learning and attention mechanism, are introduced, which can be largely attributed to a wider range of activated area, that is, the input pixels that strongly influence the SR results. However, the possibility of further improving SR performance through another versatile vision backbone remains an unresolved challenge. To address this issue, in this paper, we unleash the representation potential of the modern state space model, i.e., Vision Mamba (Vim), in the context of SISR. Specifically, we present three recipes for better utilization of Vim-based models: 1) Integration into a MetaFormer-style block; 2) Pre-training on a larger and broader dataset; 3) Employing complementary attention mechanism, upon which we introduce the MMA. The resulting network MMA is capable of finding the most relevant and representative input pixels to reconstruct the corresponding high-resolution images. Comprehensive experimental analysis reveals that MMA not only achieves competitive or even superior performance compared to state-of-the-art SISR methods but also maintains relatively low memory and computational overheads (e.g., +0.5 dB PSNR elevation on Manga109 dataset with 19.8 M parameters at the scale of 2). Furthermore, MMA proves its versatility in lightweight SR applications. Through this work, we aim to illuminate the potential applications of state space models in the broader realm of image processing rather than SISR, encouraging further exploration in this innovative direction.
Abstract:A variety of defenses have been proposed against backdoors attacks on deep neural network (DNN) classifiers. Universal methods seek to reliably detect and/or mitigate backdoors irrespective of the incorporation mechanism used by the attacker, while reverse-engineering methods often explicitly assume one. In this paper, we describe a new detector that: relies on internal feature map of the defended DNN to detect and reverse-engineer the backdoor and identify its target class; can operate post-training (without access to the training dataset); is highly effective for various incorporation mechanisms (i.e., is universal); and which has low computational overhead and so is scalable. Our detection approach is evaluated for different attacks on a benchmark CIFAR-10 image classifier.
Abstract:The contrastive vision-language pre-training, known as CLIP, demonstrates remarkable potential in perceiving open-world visual concepts, enabling effective zero-shot image recognition. Nevertheless, few-shot learning methods based on CLIP typically require offline fine-tuning of the parameters on few-shot samples, resulting in longer inference time and the risk of over-fitting in certain domains. To tackle these challenges, we propose the Meta-Adapter, a lightweight residual-style adapter, to refine the CLIP features guided by the few-shot samples in an online manner. With a few training samples, our method can enable effective few-shot learning capabilities and generalize to unseen data or tasks without additional fine-tuning, achieving competitive performance and high efficiency. Without bells and whistles, our approach outperforms the state-of-the-art online few-shot learning method by an average of 3.6\% on eight image classification datasets with higher inference speed. Furthermore, our model is simple and flexible, serving as a plug-and-play module directly applicable to downstream tasks. Without further fine-tuning, Meta-Adapter obtains notable performance improvements in open-vocabulary object detection and segmentation tasks.
Abstract:Face forgery techniques have emerged as a forefront concern, and numerous detection approaches have been proposed to address this challenge. However, existing methods predominantly concentrate on single-face manipulation detection, leaving the more intricate and realistic realm of multi-face forgeries relatively unexplored. This paper proposes a novel framework explicitly tailored for multi-face forgery detection,filling a critical gap in the current research. The framework mainly involves two modules:(i) a facial relationships learning module, which generates distinguishable local features for each face within images,(ii) a global feature aggregation module that leverages the mutual constraints between global and local information to enhance forgery detection accuracy.Our experimental results on two publicly available multi-face forgery datasets demonstrate that the proposed approach achieves state-of-the-art performance in multi-face forgery detection scenarios.
Abstract:Well-known (non-malicious) sources of overfitting in deep neural net (DNN) classifiers include: i) large class imbalances; ii) insufficient training-set diversity; and iii) over-training. In recent work, it was shown that backdoor data-poisoning also induces overfitting, with unusually large classification margins to the attacker's target class, mediated particularly by (unbounded) ReLU activations that allow large signals to propagate in the DNN. Thus, an effective post-training (with no knowledge of the training set or training process) mitigation approach against backdoors was proposed, leveraging a small clean dataset, based on bounding neural activations. Improving upon that work, we threshold activations specifically to limit maximum margins (MMs), which yields performance gains in backdoor mitigation. We also provide some analytical support for this mitigation approach. Most importantly, we show that post-training MM-based regularization substantially mitigates non-malicious overfitting due to class imbalances and overtraining. Thus, unlike adversarial training, which provides some resilience against attacks but which harms clean (attack-free) generalization, we demonstrate an approach originating from adversarial learning that helps clean generalization accuracy. Experiments on CIFAR-10 and CIFAR-100, in comparison with peer methods, demonstrate strong performance of our methods.
Abstract:Deep neural networks are vulnerable to backdoor attacks (Trojans), where an attacker poisons the training set with backdoor triggers so that the neural network learns to classify test-time triggers to the attacker's designated target class. Recent work shows that backdoor poisoning induces over-fitting (abnormally large activations) in the attacked model, which motivates a general, post-training clipping method for backdoor mitigation, i.e., with bounds on internal-layer activations learned using a small set of clean samples. We devise a new such approach, choosing the activation bounds to explicitly limit classification margins. This method gives superior performance against peer methods for CIFAR-10 image classification. We also show that this method has strong robustness against adaptive attacks, X2X attacks, and on different datasets. Finally, we demonstrate a method extension for test-time detection and correction based on the output differences between the original and activation-bounded networks. The code of our method is online available.
Abstract:The ensemble method is a promising way to mitigate the overestimation issue in Q-learning, where multiple function approximators are used to estimate the action values. It is known that the estimation bias hinges heavily on the ensemble size (i.e., the number of Q-function approximators used in the target), and that determining the `right' ensemble size is highly nontrivial, because of the time-varying nature of the function approximation errors during the learning process. To tackle this challenge, we first derive an upper bound and a lower bound on the estimation bias, based on which the ensemble size is adapted to drive the bias to be nearly zero, thereby coping with the impact of the time-varying approximation errors accordingly. Motivated by the theoretic findings, we advocate that the ensemble method can be combined with Model Identification Adaptive Control (MIAC) for effective ensemble size adaptation. Specifically, we devise Adaptive Ensemble Q-learning (AdaEQ), a generalized ensemble method with two key steps: (a) approximation error characterization which serves as the feedback for flexibly controlling the ensemble size, and (b) ensemble size adaptation tailored towards minimizing the estimation bias. Extensive experiments are carried out to show that AdaEQ can improve the learning performance than the existing methods for the MuJoCo benchmark.
Abstract:Warm-Start reinforcement learning (RL), aided by a prior policy obtained from offline training, is emerging as a promising RL approach for practical applications. Recent empirical studies have demonstrated that the performance of Warm-Start RL can be improved \textit{quickly} in some cases but become \textit{stagnant} in other cases, especially when the function approximation is used. To this end, the primary objective of this work is to build a fundamental understanding on ``\textit{whether and when online learning can be significantly accelerated by a warm-start policy from offline RL?}''. Specifically, we consider the widely used Actor-Critic (A-C) method with a prior policy. We first quantify the approximation errors in the Actor update and the Critic update, respectively. Next, we cast the Warm-Start A-C algorithm as Newton's method with perturbation, and study the impact of the approximation errors on the finite-time learning performance with inaccurate Actor/Critic updates. Under some general technical conditions, we derive the upper bounds, which shed light on achieving the desired finite-learning performance in the Warm-Start A-C algorithm. In particular, our findings reveal that it is essential to reduce the algorithm bias in online learning. We also obtain lower bounds on the sub-optimality gap of the Warm-Start A-C algorithm to quantify the impact of the bias and error propagation.