Abstract:In this work, we investigate the problem of Unmanned Surface Vehicle (USV) navigation in a dense marine environment with a high-intensity current flow. The complexities arising from static and dynamic obstacles and the disturbance forces caused by current flow render existing navigation protocols inadequate for ensuring safety and avoiding collisions at sea. To learn a safe and efficient robot policy, we propose a novel methodology that leverages attention mechanisms to capture heterogeneous interactions of the agents with the static and moving obstacles and the flow disturbances from the environment in space and time. In particular, we refine a temporal function with MarineFormer, a Transformer navigation policy for spatially variable Marine environment, trained end-to-end with reinforcement learning (RL). MarineFormer uses foundational spatio-temporal graph attention with transformer architecture to process spatial attention and temporal sequences in an environment that simulates a 2D turbulent marine condition. We propose architectural modifications that improve the stability and learning speed of the recurrent models. The flow velocity estimation, which can be derived from flow simulations or sensors, is incorporated into a model-free RL framework to prevent the robot from entering into high-intensity current flow regions including intense vortices, while potentially leveraging the flow to assist in transportation. The investigated 2D marine environment encompasses flow singularities, including vortices, sinks, and sources, representing fundamental planar flow patterns associated with flood or maritime thunderstorms. Our proposed method is trained with a new reward model to deal with static and dynamic obstacles and disturbances from the current flow.
Abstract:Imitation learning has demonstrated significant potential in performing high-precision manipulation tasks using visual feedback from cameras. However, it is common practice in imitation learning for cameras to be fixed in place, resulting in issues like occlusion and limited field of view. Furthermore, cameras are often placed in broad, general locations, without an effective viewpoint specific to the robot's task. In this work, we investigate the utility of active vision (AV) for imitation learning and manipulation, in which, in addition to the manipulation policy, the robot learns an AV policy from human demonstrations to dynamically change the robot's camera viewpoint to obtain better information about its environment and the given task. We introduce AV-ALOHA, a new bimanual teleoperation robot system with AV, an extension of the ALOHA 2 robot system, incorporating an additional 7-DoF robot arm that only carries a stereo camera and is solely tasked with finding the best viewpoint. This camera streams stereo video to an operator wearing a virtual reality (VR) headset, allowing the operator to control the camera pose using head and body movements. The system provides an immersive teleoperation experience, with bimanual first-person control, enabling the operator to dynamically explore and search the scene and simultaneously interact with the environment. We conduct imitation learning experiments of our system both in real-world and in simulation, across a variety of tasks that emphasize viewpoint planning. Our results demonstrate the effectiveness of human-guided AV for imitation learning, showing significant improvements over fixed cameras in tasks with limited visibility. Project website: https://soltanilara.github.io/av-aloha/
Abstract:Human navigation is facilitated through the association of actions with landmarks, tapping into our ability to recognize salient features in our environment. Consequently, navigational instructions for humans can be extremely concise, such as short verbal descriptions, indicating a small memory requirement and no reliance on complex and overly accurate navigation tools. Conversely, current autonomous navigation schemes rely on accurate positioning devices and algorithms as well as extensive streams of sensory data collected from the environment. Inspired by this human capability and motivated by the associated technological gap, in this work we propose a hierarchical end-to-end meta-learning scheme that enables a mobile robot to navigate in a previously unknown environment upon presentation of only a few sample images of a set of landmarks along with their corresponding high-level navigation actions. This dramatically simplifies the wayfinding process and enables easy adoption to new environments. For few-shot waypoint detection, we implement a metric-based few-shot learning technique through distribution embedding. Waypoint detection triggers the multi-task low-level maneuver controller module to execute the corresponding high-level navigation action. We demonstrate the effectiveness of the scheme using a small-scale autonomous vehicle on novel indoor navigation tasks in several previously unseen environments.
Abstract:We present InterACT: Inter-dependency aware Action Chunking with Hierarchical Attention Transformers, a novel imitation learning framework for bimanual manipulation that integrates hierarchical attention to capture inter-dependencies between dual-arm joint states and visual inputs. InterACT consists of a Hierarchical Attention Encoder and a Multi-arm Decoder, both designed to enhance information aggregation and coordination. The encoder processes multi-modal inputs through segment-wise and cross-segment attention mechanisms, while the decoder leverages synchronization blocks to refine individual action predictions, providing the counterpart's prediction as context. Our experiments on a variety of simulated and real-world bimanual manipulation tasks demonstrate that InterACT significantly outperforms existing methods. Detailed ablation studies validate the contributions of key components of our work, including the impact of CLS tokens, cross-segment encoders, and synchronization blocks.
Abstract:To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on https://github.com/ucd-dare/CarDreamer.
Abstract:Autonomous driving presents many challenges due to the large number of scenarios the autonomous vehicle (AV) may encounter. End-to-end deep learning models are comparatively simplistic models that can handle a broad set of scenarios. However, end-to-end models require large amounts of diverse data to perform well. This paper presents a novel deep neural network that performs image-to-steering path navigation that helps with the data problem by adding one-shot learning to the system. Presented with a previously unseen path, the vehicle can drive the path autonomously after being shown the path once and without model retraining. In fact, the full path is not needed and images of the road junctions is sufficient. In-vehicle testing and offline testing are used to verify the performance of the proposed navigation and to compare different candidate architectures.