Abstract:Imitation learning has demonstrated significant potential in performing high-precision manipulation tasks using visual feedback from cameras. However, it is common practice in imitation learning for cameras to be fixed in place, resulting in issues like occlusion and limited field of view. Furthermore, cameras are often placed in broad, general locations, without an effective viewpoint specific to the robot's task. In this work, we investigate the utility of active vision (AV) for imitation learning and manipulation, in which, in addition to the manipulation policy, the robot learns an AV policy from human demonstrations to dynamically change the robot's camera viewpoint to obtain better information about its environment and the given task. We introduce AV-ALOHA, a new bimanual teleoperation robot system with AV, an extension of the ALOHA 2 robot system, incorporating an additional 7-DoF robot arm that only carries a stereo camera and is solely tasked with finding the best viewpoint. This camera streams stereo video to an operator wearing a virtual reality (VR) headset, allowing the operator to control the camera pose using head and body movements. The system provides an immersive teleoperation experience, with bimanual first-person control, enabling the operator to dynamically explore and search the scene and simultaneously interact with the environment. We conduct imitation learning experiments of our system both in real-world and in simulation, across a variety of tasks that emphasize viewpoint planning. Our results demonstrate the effectiveness of human-guided AV for imitation learning, showing significant improvements over fixed cameras in tasks with limited visibility. Project website: https://soltanilara.github.io/av-aloha/
Abstract:Human navigation is facilitated through the association of actions with landmarks, tapping into our ability to recognize salient features in our environment. Consequently, navigational instructions for humans can be extremely concise, such as short verbal descriptions, indicating a small memory requirement and no reliance on complex and overly accurate navigation tools. Conversely, current autonomous navigation schemes rely on accurate positioning devices and algorithms as well as extensive streams of sensory data collected from the environment. Inspired by this human capability and motivated by the associated technological gap, in this work we propose a hierarchical end-to-end meta-learning scheme that enables a mobile robot to navigate in a previously unknown environment upon presentation of only a few sample images of a set of landmarks along with their corresponding high-level navigation actions. This dramatically simplifies the wayfinding process and enables easy adoption to new environments. For few-shot waypoint detection, we implement a metric-based few-shot learning technique through distribution embedding. Waypoint detection triggers the multi-task low-level maneuver controller module to execute the corresponding high-level navigation action. We demonstrate the effectiveness of the scheme using a small-scale autonomous vehicle on novel indoor navigation tasks in several previously unseen environments.
Abstract:We present InterACT: Inter-dependency aware Action Chunking with Hierarchical Attention Transformers, a novel imitation learning framework for bimanual manipulation that integrates hierarchical attention to capture inter-dependencies between dual-arm joint states and visual inputs. InterACT consists of a Hierarchical Attention Encoder and a Multi-arm Decoder, both designed to enhance information aggregation and coordination. The encoder processes multi-modal inputs through segment-wise and cross-segment attention mechanisms, while the decoder leverages synchronization blocks to refine individual action predictions, providing the counterpart's prediction as context. Our experiments on a variety of simulated and real-world bimanual manipulation tasks demonstrate that InterACT significantly outperforms existing methods. Detailed ablation studies validate the contributions of key components of our work, including the impact of CLS tokens, cross-segment encoders, and synchronization blocks.