Abstract:Low-Dose computer tomography (LDCT) is an ideal alternative to reduce radiation risk in clinical applications. Although supervised-deep-learning-based reconstruction methods have demonstrated superior performance compared to conventional model-driven reconstruction algorithms, they require collecting massive pairs of low-dose and norm-dose CT images for neural network training, which limits their practical application in LDCT imaging. In this paper, we propose an unsupervised and training data-free learning reconstruction method for LDCT imaging that avoids the requirement for training data. The proposed method is a post-processing technique that aims to enhance the initial low-quality reconstruction results, and it reconstructs the high-quality images by neural work training that minimizes the $\ell_1$-norm distance between the CT measurements and their corresponding simulated sinogram data, as well as the total variation (TV) value of the reconstructed image. Moreover, the proposed method does not require to set the weights for both the data fidelity term and the plenty term. Experimental results on the AAPM challenge data and LoDoPab-CT data demonstrate that the proposed method is able to effectively suppress the noise and preserve the tiny structures. And these results also shows the proposed method's low computational cost and rapid convergence. The source code is available at \url{https://github.com/linfengyu77/IRLDCT}.
Abstract:Deep learning techniques have been used to build velocity models (VMs) for seismic traveltime tomography and have shown encouraging performance in recent years. However, they need to generate labeled samples (i.e., pairs of input and label) to train the deep neural network (NN) with end-to-end learning, and the real labels for field data inversion are usually missing or very expensive. Some traditional tomographic methods can be implemented quickly, but their effectiveness is often limited by prior assumptions. To avoid generating labeled samples, we propose a novel method by integrating deep learning and dictionary learning to enhance the VMs with low resolution by using the traditional tomography-least square method (LSQR). We first design a type of shallow and simple NN to reduce computational cost followed by proposing a two-step strategy to enhance the VMs with low resolution: (1) Warming up. An initial dictionary is trained from the estimation by LSQR through dictionary learning method; (2) Dictionary optimization. The initial dictionary obtained in the warming-up step will be optimized by the NN, and then it will be used to reconstruct high-resolution VMs with the reference slowness and the estimation by LSQR. Furthermore, we design a loss function to minimize traveltime misfit to ensure that NN training is label-free, and the optimized dictionary can be obtained after each epoch of NN training. We demonstrate the effectiveness of the proposed method through numerical tests.
Abstract:Latent fingerprints are among the most important and widely used evidence in crime scenes, digital forensics and law enforcement worldwide. Despite the number of advancements reported in recent works, we note that significant open issues such as independent benchmarking and lack of large-scale evaluation databases for improving the algorithms are inadequately addressed. The available databases are mostly of semi-public nature, lack of acquisition in the wild environment, and post-processing pipelines. Moreover, they do not represent a realistic capture scenario similar to real crime scenes, to benchmark the robustness of the algorithms. Further, existing databases for latent fingerprint recognition do not have a large number of unique subjects/fingerprint instances or do not provide ground truth/reference fingerprint images to conduct a cross-comparison against the latent. In this paper, we introduce a new wild large-scale latent fingerprint database that includes five different acquisition scenarios: reference fingerprints from (1) optical and (2) capacitive sensors, (3) smartphone fingerprints, latent fingerprints captured from (4) wall surface, (5) Ipad surface, and (6) aluminium foil surface. The new database consists of 1,318 unique fingerprint instances captured in all above mentioned settings. A total of 2,636 reference fingerprints from optical and capacitive sensors, 1,318 fingerphotos from smartphones, and 9,224 latent fingerprints from each of the 132 subjects were provided in this work. The dataset is constructed considering various age groups, equal representations of genders and backgrounds. In addition, we provide an extensive set of analysis of various subset evaluations to highlight open challenges for future directions in latent fingerprint recognition research.