Abstract:Autonomous vehicles (AVs) can significantly promote the advances in road transport mobility in terms of safety, reliability, and decarbonization. However, ensuring safety and efficiency in interactive during within dynamic and diverse environments is still a primary barrier to large-scale AV adoption. In recent years, deep reinforcement learning (DRL) has emerged as an advanced AI-based approach, enabling AVs to learn decision-making strategies adaptively from data and interactions. DRL strategies are better suited than traditional rule-based methods for handling complex, dynamic, and unpredictable driving environments due to their adaptivity. However, varying driving scenarios present distinct challenges, such as avoiding obstacles on highways and reaching specific exits at intersections, requiring different scenario-specific decision-making algorithms. Many DRL algorithms have been proposed in interactive decision-making. However, a rationale review of these DRL algorithms across various scenarios is lacking. Therefore, a comprehensive evaluation is essential to assess these algorithms from multiple perspectives, including those of vehicle users and vehicle manufacturers. This survey reviews the application of DRL algorithms in autonomous driving across typical scenarios, summarizing road features and recent advancements. The scenarios include highways, on-ramp merging, roundabouts, and unsignalized intersections. Furthermore, DRL-based algorithms are evaluated based on five rationale criteria: driving safety, driving efficiency, training efficiency, unselfishness, and interpretability (DDTUI). Each criterion of DDTUI is specifically analyzed in relation to the reviewed algorithms. Finally, the challenges for future DRL-based decision-making algorithms are summarized.
Abstract:Federated Unlearning (FU) enables clients to selectively remove the influence of specific data from a trained federated learning model, addressing privacy concerns and regulatory requirements. However, existing FU methods often struggle to balance effective erasure with model utility preservation, especially for class-level unlearning in non-IID settings. We propose Federated Unlearning via Class-aware Representation Transformation (FUCRT), a novel method that achieves unlearning through class-aware representation transformation. FUCRT employs two key components: (1) a transformation class selection strategy to identify optimal forgetting directions, and (2) a transformation alignment technique using dual class-aware contrastive learning to ensure consistent transformations across clients. Extensive experiments on four datasets demonstrate FUCRT's superior performance in terms of erasure guarantee, model utility preservation, and efficiency. FUCRT achieves complete (100\%) erasure of unlearning classes while maintaining or improving performance on remaining classes, outperforming state-of-the-art baselines across both IID and Non-IID settings. Analysis of the representation space reveals FUCRT's ability to effectively merge unlearning class representations with the transformation class from remaining classes, closely mimicking the model retrained from scratch.
Abstract:The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving cars that can be run on a CPU-only device using a single RGB-D camera. The method consists of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3 enhanced with optical flow to estimate the car's poses and extract rich texture information from the scene. In the path planning phase, we employ a method combining a control Lyapunov function and control barrier function in the form of quadratic program (CLF-CBF-QP) together with an obstacle shape reconstruction process (SRP) to plan safe and stable trajectories. To validate the performance and robustness of the proposed method, simulation experiments were conducted with a car in various complex indoor environments using the Gazebo simulation environment. Our method can effectively avoid obstacles in the scenes. The proposed algorithm outperforms benchmark algorithms in achieving more stable and shorter trajectories across multiple simulated scenes.
Abstract:Safety and efficiency are crucial for autonomous driving in roundabouts, especially in the context of mixed traffic where autonomous vehicles (AVs) and human-driven vehicles coexist. This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors across varying levels of traffic flows in roundabouts. The proposed algorithm employs a deep Q-learning network to effectively learn safe and efficient driving strategies in complex multi-vehicle roundabouts. Additionally, a KAN (Kolmogorov-Arnold network) enhances the AVs' ability to learn their surroundings robustly and precisely. An action inspector is integrated to replace dangerous actions to avoid collisions when the AV interacts with the environment, and a route planner is proposed to enhance the driving efficiency and safety of the AVs. Moreover, a model predictive control is adopted to ensure stability and precision of the driving actions. The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process, as evidenced by the smooth convergence of the reward function and the low variance in the training curves across various traffic flows. Compared to state-of-the-art benchmarks, the proposed algorithm achieves a lower number of collisions and reduced travel time to destination.
Abstract:The key challenge of cross-modal domain-incremental learning (DIL) is to enable the learning model to continuously learn from novel data with different feature distributions under the same task without forgetting old ones. However, existing top-performing methods still cause high forgetting rates, by lacking intra-domain knowledge extraction and inter-domain common prompting strategy. In this paper, we propose a simple yet effective framework, CP-Prompt, by training limited parameters to instruct a pre-trained model to learn new domains and avoid forgetting existing feature distributions. CP-Prompt captures intra-domain knowledge by compositionally inserting personalized prompts on multi-head self-attention layers and then learns the inter-domain knowledge with a common prompting strategy. CP-Prompt shows superiority compared with state-of-the-art baselines among three widely evaluated DIL tasks. The source code is available at https://github.com/dannis97500/CP_Prompt.
Abstract:Contribution evaluation in federated learning (FL) has become a pivotal research area due to its applicability across various domains, such as detecting low-quality datasets, enhancing model robustness, and designing incentive mechanisms. Existing contribution evaluation methods, which primarily rely on data volume, model similarity, and auxiliary test datasets, have shown success in diverse scenarios. However, their effectiveness often diminishes due to the heterogeneity of data distributions, presenting a significant challenge to their applicability. In response, this paper explores contribution evaluation in FL from an entirely new perspective of representation. In this work, we propose a new method for the contribution evaluation of heterogeneous participants in federated learning (FLCE), which introduces a novel indicator \emph{class contribution momentum} to conduct refined contribution evaluation. Our core idea is the construction and application of the class contribution momentum indicator from individual, relative, and holistic perspectives, thereby achieving an effective and efficient contribution evaluation of heterogeneous participants without relying on an auxiliary test dataset. Extensive experimental results demonstrate the superiority of our method in terms of fidelity, effectiveness, efficiency, and heterogeneity across various scenarios.
Abstract:Transformer-based large language models (LLMs) typically have a limited context window, resulting in significant performance degradation when processing text beyond the length of the context window. Extensive studies have been proposed to extend the context window and achieve length extrapolation of LLMs, but there is still a lack of in-depth interpretation of these approaches. In this study, we explore the positional information within and beyond the context window for deciphering the underlying mechanism of LLMs. By using a mean-based decomposition method, we disentangle positional vectors from hidden states of LLMs and analyze their formation and effect on attention. Furthermore, when texts exceed the context window, we analyze the change of positional vectors in two settings, i.e., direct extrapolation and context window extension. Based on our findings, we design two training-free context window extension methods, positional vector replacement and attention window extension. Experimental results show that our methods can effectively extend the context window length.
Abstract:To capture user preference, transformer models have been widely applied to model sequential user behavior data. The core of transformer architecture lies in the self-attention mechanism, which computes the pairwise attention scores in a sequence. Due to the permutation-equivariant nature, positional encoding is used to enhance the attention between token representations. In this setting, the pairwise attention scores can be derived by both semantic difference and positional difference. However, prior studies often model the two kinds of difference measurements in different ways, which potentially limits the expressive capacity of sequence modeling. To address this issue, this paper proposes a novel transformer variant with complex vector attention, named EulerFormer, which provides a unified theoretical framework to formulate both semantic difference and positional difference. The EulerFormer involves two key technical improvements. First, it employs a new transformation function for efficiently transforming the sequence tokens into polar-form complex vectors using Euler's formula, enabling the unified modeling of both semantic and positional information in a complex rotation form.Secondly, it develops a differential rotation mechanism, where the semantic rotation angles can be controlled by an adaptation function, enabling the adaptive integration of the semantic and positional information according to the semantic contexts.Furthermore, a phase contrastive learning task is proposed to improve the isotropy of contextual representations in EulerFormer. Our theoretical framework possesses a high degree of completeness and generality. It is more robust to semantic variations and possesses moresuperior theoretical properties in principle. Extensive experiments conducted on four public datasets demonstrate the effectiveness and efficiency of our approach.
Abstract:With the rapid development of recommender systems, there is increasing side information that can be employed to improve the recommendation performance. Specially, we focus on the utilization of the associated \emph{textual data} of items (eg product title) and study how text features can be effectively fused with ID features in sequential recommendation. However, there exists distinct data characteristics for the two kinds of item features, making a direct fusion method (eg adding text and ID embeddings as item representation) become less effective. To address this issue, we propose a novel {\ul \emph{Te}}xt-I{\ul \emph{D}} semantic fusion approach for sequential {\ul \emph{Rec}}ommendation, namely \textbf{\our}. The core idea of our approach is to conduct a sequence-level semantic fusion approach by better integrating global contexts. The key strategy lies in that we transform the text embeddings and ID embeddings by Fourier Transform from \emph{time domain} to \emph{frequency domain}. In the frequency domain, the global sequential characteristics of the original sequences are inherently aggregated into the transformed representations, so that we can employ simple multiplicative operations to effectively fuse the two kinds of item features. Our fusion approach can be proved to have the same effects of contextual convolution, so as to achieving sequence-level semantic fusion. In order to further improve the fusion performance, we propose to enhance the discriminability of the text embeddings from the text encoder, by adaptively injecting positional information via a mixture-of-experts~(MoE) modulation method. Our implementation is available at this repository: \textcolor{magenta}{\url{https://github.com/RUCAIBox/TedRec}}.
Abstract:Click-Through Rate (CTR) prediction, which aims to estimate the probability of a user clicking on an item, is a key task in online advertising. Numerous existing CTR models concentrate on modeling the feature interactions within a solitary domain, thereby rendering them inadequate for fulfilling the requisites of multi-domain recommendations in real industrial scenarios. Some recent approaches propose intricate architectures to enhance knowledge sharing and augment model training across multiple domains. However, these approaches encounter difficulties when being transferred to new recommendation domains, owing to their reliance on the modeling of ID features (e.g., item id). To address the above issue, we propose the Universal Feature Interaction Network (UFIN) approach for CTR prediction. UFIN exploits textual data to learn universal feature interactions that can be effectively transferred across diverse domains. For learning universal feature representations, we regard the text and feature as two different modalities and propose an encoder-decoder network founded on a Large Language Model (LLM) to enforce the transfer of data from the text modality to the feature modality. Building upon the above foundation, we further develop a mixtureof-experts (MoE) enhanced adaptive feature interaction model to learn transferable collaborative patterns across multiple domains. Furthermore, we propose a multi-domain knowledge distillation framework to enhance feature interaction learning. Based on the above methods, UFIN can effectively bridge the semantic gap to learn common knowledge across various domains, surpassing the constraints of ID-based models. Extensive experiments conducted on eight datasets show the effectiveness of UFIN, in both multidomain and cross-platform settings. Our code is available at https://github.com/RUCAIBox/UFIN.