Abstract:Human mobility studies how people move to access their needed resources and plays a significant role in urban planning and location-based services. As a paramount task of human mobility modeling, next location prediction is challenging because of the diversity of users' historical trajectories that gives rise to complex mobility patterns and various contexts. Deep sequential models have been widely used to predict the next location by leveraging the inherent sequentiality of trajectory data. However, they do not fully leverage the relationship between locations and fail to capture users' multi-level preferences. This work constructs a trajectory graph from users' historical traces and proposes a \textbf{Traj}ectory \textbf{G}raph \textbf{E}nhanced \textbf{O}rientation-based \textbf{S}equential network (TrajGEOS) for next-location prediction tasks. TrajGEOS introduces hierarchical graph convolution to capture location and user embeddings. Such embeddings consider not only the contextual feature of locations but also the relation between them, and serve as additional features in downstream modules. In addition, we design an orientation-based module to learn users' mid-term preferences from sequential modeling modules and their recent trajectories. Extensive experiments on three real-world LBSN datasets corroborate the value of graph and orientation-based modules and demonstrate that TrajGEOS outperforms the state-of-the-art methods on the next location prediction task.
Abstract:User post-click conversion prediction is of high interest to researchers and developers. Recent studies employ multi-task learning to tackle the selection bias and data sparsity problem, two severe challenges in post-click behavior prediction, by incorporating click data. However, prior works mainly focused on pointwise learning and the orders of labels (i.e., click and post-click) are not well explored, which naturally poses a listwise learning problem. Inspired by recent advances on differentiable sorting, in this paper, we propose a novel multi-task framework that leverages orders of user behaviors to predict user post-click conversion in an end-to-end approach. Specifically, we define an aggregation operator to combine predicted outputs of different tasks to a unified score, then we use the computed scores to model the label relations via differentiable sorting. Extensive experiments on public and industrial datasets show the superiority of our proposed model against competitive baselines.
Abstract:Sparsity and missing data problems are very common in spatiotemporal traffic data collected from various sensing systems. Making accurate imputation is critical to many applications in intelligent transportation systems. In this paper, we formulate the missing data imputation problem in spatiotemporal traffic data in a low-rank tensor completion (LRTC) framework and define a novel truncated nuclear norm (TNN) on traffic tensors of location$\times$day$\times$time of day. In particular, we introduce an universal rate parameter to control the degree of truncation on all tensor modes in the proposed LRTC-TNN model, and this allows us to better characterize the hidden patterns in spatiotemporal traffic data. Based on the framework of the Alternating Direction Method of Multipliers (ADMM), we present an efficient algorithm to obtain the optimal solution for each variable. We conduct numerical experiments on four spatiotemporal traffic data sets, and our results show that the proposed LRTC-TNN model outperforms many state-of-the-art imputation models with missing rates/patterns. Moreover, the proposed model also outperforms other baseline models in extreme missing scenarios.