Abstract:Safety and efficiency are crucial for autonomous driving in roundabouts, especially in the context of mixed traffic where autonomous vehicles (AVs) and human-driven vehicles coexist. This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors across varying levels of traffic flows in roundabouts. The proposed algorithm employs a deep Q-learning network to effectively learn safe and efficient driving strategies in complex multi-vehicle roundabouts. Additionally, a KAN (Kolmogorov-Arnold network) enhances the AVs' ability to learn their surroundings robustly and precisely. An action inspector is integrated to replace dangerous actions to avoid collisions when the AV interacts with the environment, and a route planner is proposed to enhance the driving efficiency and safety of the AVs. Moreover, a model predictive control is adopted to ensure stability and precision of the driving actions. The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process, as evidenced by the smooth convergence of the reward function and the low variance in the training curves across various traffic flows. Compared to state-of-the-art benchmarks, the proposed algorithm achieves a lower number of collisions and reduced travel time to destination.
Abstract:Heatmap-based methods play an important role in anatomical landmark detection. However, most current heatmap-based methods assume that the distributions of all landmarks are the same and the distribution of each landmark is isotropic, which may not be in line with reality. For example, the landmark on the jaw is more likely to be located along the edge and less likely to be located inside or outside the jaw. Manually annotating tends to follow similar rules, resulting in an anisotropic distribution for annotated landmarks, which represents the uncertainty in the annotation. To estimate the uncertainty, we propose a module named Pyramid Covariance Predictor to predict the covariance matrices of the target Gaussian distributions, which determine the distributions of landmarks and represent the uncertainty of landmark annotation. Specifically, the Pyramid Covariance Predictor utilizes the pyramid features extracted by the encoder of the backbone U-Net and predicts the Cholesky decomposition of the covariance matrix of the landmark location distribution. Experimental results show that the proposed Pyramid Covariance Predictor can accurately predict the distributions and improve the performance of anatomical landmark detection.