Abstract:Mental disorders are among the foremost contributors to the global healthcare challenge. Research indicates that timely diagnosis and intervention are vital in treating various mental disorders. However, the early somatization symptoms of certain mental disorders may not be immediately evident, often resulting in their oversight and misdiagnosis. Additionally, the traditional diagnosis methods incur high time and cost. Deep learning methods based on fMRI and EEG have improved the efficiency of the mental disorder detection process. However, the cost of the equipment and trained staff are generally huge. Moreover, most systems are only trained for a specific mental disorder and are not general-purpose. Recently, physiological studies have shown that there are some speech and facial-related symptoms in a few mental disorders (e.g., depression and ADHD). In this paper, we focus on the emotional expression features of mental disorders and introduce a multimodal mental disorder diagnosis system based on audio-visual information input. Our proposed system is based on spatial-temporal attention networks and innovative uses a less computationally intensive pre-train audio recognition network to fine-tune the video recognition module for better results. We also apply the unified system for multiple mental disorders (ADHD and depression) for the first time. The proposed system achieves over 80\% accuracy on the real multimodal ADHD dataset and achieves state-of-the-art results on the depression dataset AVEC 2014.
Abstract:Demand for ADHD diagnosis and treatment is increasing significantly and the existing services are unable to meet the demand in a timely manner. In this work, we introduce a novel action recognition method for ADHD diagnosis by identifying and analysing raw video recordings. Our main contributions include 1) designing and implementing a test focusing on the attention and hyperactivity/impulsivity of participants, recorded through three cameras; 2) implementing a novel machine learning ADHD diagnosis system based on action recognition neural networks for the first time; 3) proposing classification criteria to provide diagnosis results and analysis of ADHD action characteristics.
Abstract:Attention Deficit Hyperactivity Disorder (ADHD) causes significant impairment in various domains. Early diagnosis of ADHD and treatment could significantly improve the quality of life and functioning. Recently, machine learning methods have improved the accuracy and efficiency of the ADHD diagnosis process. However, the cost of the equipment and trained staff required by the existing methods are generally huge. Therefore, we introduce the video-based frame-level action recognition network to ADHD diagnosis for the first time. We also record a real multi-modal ADHD dataset and extract three action classes from the video modality for ADHD diagnosis. The whole process data have been reported to CNTW-NHS Foundation Trust, which would be reviewed by medical consultants/professionals and will be made public in due course.
Abstract:Cross-domain recommendation (CDR) is an effective way to alleviate the data sparsity problem. Content-based CDR is one of the most promising branches since most kinds of products can be described by a piece of text, especially when cold-start users or items have few interactions. However, two vital issues are still under-explored: (1) From the content modeling perspective, sufficient long-text descriptions are usually scarce in a real recommender system, more often the light-weight textual features, such as a few keywords or tags, are more accessible, which is improperly modeled by existing methods. (2) From the CDR perspective, not all inter-domain interests are helpful to infer intra-domain interests. Caused by domain-specific features, there are part of signals benefiting for recommendation in the source domain but harmful for that in the target domain. Therefore, how to distill useful interests is crucial. To tackle the above two problems, we propose a metapath and multi-interest aggregated graph neural network (M2GNN). Specifically, to model the tag-based contents, we construct a heterogeneous information network to hold the semantic relatedness between users, items, and tags in all domains. The metapath schema is predefined according to domain-specific knowledge, with one metapath for one domain. User representations are learned by GNN with a hierarchical aggregation framework, where the intra-metapath aggregation firstly filters out trivial tags and the inter-metapath aggregation further filters out useless interests. Offline experiments and online A/B tests demonstrate that M2GNN achieves significant improvements over the state-of-the-art methods and current industrial recommender system in Dianping, respectively. Further analysis shows that M2GNN offers an interpretable recommendation.
Abstract:Attention Deficit Hyperactivity Disorder (ADHD) is a common neurobehavioral disorder worldwide. While extensive research has focused on machine learning methods for ADHD diagnosis, most research relies on high-cost equipment, e.g., MRI machine and EEG patch. Therefore, low-cost diagnostic methods based on the action characteristics of ADHD are desired. Skeleton-based action recognition has gained attention due to the action-focused nature and robustness. In this work, we propose a novel ADHD diagnosis system with a skeleton-based action recognition framework, utilizing a real multi-modal ADHD dataset and state-of-the-art detection algorithms. Compared to conventional methods, the proposed method shows cost-efficiency and significant performance improvement, making it more accessible for a broad range of initial ADHD diagnoses. Through the experiment results, the proposed method outperforms the conventional methods in accuracy and AUC. Meanwhile, our method is widely applicable for mass screening.