Abstract:Demand for ADHD diagnosis and treatment is increasing significantly and the existing services are unable to meet the demand in a timely manner. In this work, we introduce a novel action recognition method for ADHD diagnosis by identifying and analysing raw video recordings. Our main contributions include 1) designing and implementing a test focusing on the attention and hyperactivity/impulsivity of participants, recorded through three cameras; 2) implementing a novel machine learning ADHD diagnosis system based on action recognition neural networks for the first time; 3) proposing classification criteria to provide diagnosis results and analysis of ADHD action characteristics.