Abstract:Product bundling aims to organize a set of thematically related items into a combined bundle for shipment facilitation and item promotion. To increase the exposure of fresh or overstocked products, sellers typically bundle these items with popular products for inventory clearance. This specific task can be formulated as a long-tail product bundling scenario, which leverages the user-item interactions to define the popularity of each item. The inherent popularity bias in the pre-extracted user feedback features and the insufficient utilization of other popularity-independent knowledge may force the conventional bundling methods to find more popular items, thereby struggling with this long-tail bundling scenario. Through intuitive and empirical analysis, we navigate the core solution for this challenge, which is maximally mining the popularity-free features and effectively incorporating them into the bundling process. To achieve this, we propose a Distilled Modality-Oriented Knowledge Transfer framework (DieT) to effectively counter the popularity bias misintroduced by the user feedback features and adhere to the original intent behind the real-world bundling behaviors. Specifically, DieT first proposes the Popularity-free Collaborative Distribution Modeling module (PCD) to capture the popularity-independent information from the bundle-item view, which is proven most effective in the long-tail bundling scenario to enable the directional information transfer. With the tailored Unbiased Bundle-aware Knowledge Transferring module (UBT), DieT can highlight the significance of popularity-free features while mitigating the negative effects of user feedback features in the long-tail scenario via the knowledge distillation paradigm. Extensive experiments on two real-world datasets demonstrate the superiority of DieT over a list of SOTA methods in the long-tail bundling scenario.
Abstract:Recommender systems aim to capture users' personalized preferences from the cast amount of user behaviors, making them pivotal in the era of information explosion. However, the presence of the dynamic preference, the "information cocoons", and the inherent feedback loops in recommendation make users interact with a limited number of items. Conventional recommendation algorithms typically focus on the positive historical behaviors, while neglecting the essential role of negative feedback in user interest understanding. As a promising but easy-to-ignored area, negative sampling is proficients in revealing the genuine negative aspect inherent in user behaviors, emerging as an inescapable procedure in recommendation. In this survey, we first discuss the role of negative sampling in recommendation and thoroughly analyze challenges that consistently impede its progress. Then, we conduct an extensive literature review on the existing negative sampling strategies in recommendation and classify them into five categories with their discrepant techniques. Finally, we detail the insights of the tailored negative sampling strategies in diverse recommendation scenarios and outline an overview of the prospective research directions toward which the community may engage and benefit.
Abstract:Pioneering efforts have verified the effectiveness of the diffusion models in exploring the informative uncertainty for recommendation. Considering the difference between recommendation and image synthesis tasks, existing methods have undertaken tailored refinements to the diffusion and reverse process. However, these approaches typically use the highest-score item in corpus for user interest prediction, leading to the ignorance of the user's generalized preference contained within other items, thereby remaining constrained by the data sparsity issue. To address this issue, this paper presents a novel Plug-in Diffusion Model for Recommendation (PDRec) framework, which employs the diffusion model as a flexible plugin to jointly take full advantage of the diffusion-generating user preferences on all items. Specifically, PDRec first infers the users' dynamic preferences on all items via a time-interval diffusion model and proposes a Historical Behavior Reweighting (HBR) mechanism to identify the high-quality behaviors and suppress noisy behaviors. In addition to the observed items, PDRec proposes a Diffusion-based Positive Augmentation (DPA) strategy to leverage the top-ranked unobserved items as the potential positive samples, bringing in informative and diverse soft signals to alleviate data sparsity. To alleviate the false negative sampling issue, PDRec employs Noise-free Negative Sampling (NNS) to select stable negative samples for ensuring effective model optimization. Extensive experiments and analyses on four datasets have verified the superiority of the proposed PDRec over the state-of-the-art baselines and showcased the universality of PDRec as a flexible plugin for commonly-used sequential encoders in different recommendation scenarios. The code is available in https://github.com/hulkima/PDRec.
Abstract:Multimedia recommendation aims to fuse the multi-modal information of items for feature enrichment to improve the recommendation performance. However, existing methods typically introduce multi-modal information based on collaborative information to improve the overall recommendation precision, while failing to explore its cold-start recommendation performance. Meanwhile, these above methods are only applicable when such multi-modal data is available. To address this problem, this paper proposes a recommendation framework, named Cross-modal Content Inference and Feature Enrichment Recommendation (CIERec), which exploits the multi-modal information to improve its cold-start recommendation performance. Specifically, CIERec first introduces image annotation as the privileged information to help guide the mapping of unified features from the visual space to the semantic space in the training phase. And then CIERec enriches the content representation with the fusion of collaborative, visual, and cross-modal inferred representations, so as to improve its cold-start recommendation performance. Experimental results on two real-world datasets show that the content representations learned by CIERec are able to achieve superior cold-start recommendation performance over existing visually-aware recommendation algorithms. More importantly, CIERec can consistently achieve significant improvements with different conventional visually-aware backbones, which verifies its universality and effectiveness.
Abstract:Cross-domain recommendation (CDR) aims to leverage the users' behaviors in both source and target domains to improve the target domain's performance. Conventional CDR methods typically explore the dual relations between the source and target domains' behavior sequences. However, they ignore modeling the third sequence of mixed behaviors that naturally reflects the user's global preference. To address this issue, we present a novel and model-agnostic Triple sequence learning for cross-domain recommendation (Tri-CDR) framework to jointly model the source, target, and mixed behavior sequences in CDR. Specifically, Tri-CDR independently models the hidden user representations for the source, target, and mixed behavior sequences, and proposes a triple cross-domain attention (TCA) to emphasize the informative knowledge related to both user's target-domain preference and global interests in three sequences. To comprehensively learn the triple correlations, we design a novel triple contrastive learning (TCL) that jointly considers coarse-grained similarities and fine-grained distinctions among three sequences, ensuring the alignment while preserving the information diversity in multi-domain. We conduct extensive experiments and analyses on two real-world datasets with four domains. The significant improvements of Tri-CDR with different sequential encoders on all datasets verify the effectiveness and universality. The source code will be released in the future.