Abstract:The development of large language models (LLMs) has entered in a experience-driven era, flagged by the emergence of environment feedback-driven learning via reinforcement learning and tool-using agents. This encourages the emergenece of model context protocol (MCP), which defines the standard on how should a LLM interact with external services, such as \api and data. However, as MCP becomes the de facto standard for LLM agent systems, it also introduces new safety risks. In particular, MCP introduces third-party services, which are not controlled by the LLM developers, into the agent systems. These third-party MCP services provider are potentially malicious and have the economic incentives to exploit vulnerabilities and sabotage user-agent interactions. In this position paper, we advocate the research community in LLM safety to pay close attention to the new safety risks issues introduced by MCP, and develop new techniques to build safe MCP-powered agent systems. To establish our position, we argue with three key parts. (1) We first construct \framework, a controlled framework to examine safety issues in MCP-powered agent systems. (2) We then conduct a series of pilot experiments to demonstrate the safety risks in MCP-powered agent systems is a real threat and its defense is not trivial. (3) Finally, we give our outlook by showing a roadmap to build safe MCP-powered agent systems. In particular, we would call for researchers to persue the following research directions: red teaming, MCP safe LLM development, MCP safety evaluation, MCP safety data accumulation, MCP service safeguard, and MCP safe ecosystem construction. We hope this position paper can raise the awareness of the research community in MCP safety and encourage more researchers to join this important research direction. Our code is available at https://github.com/littlelittlenine/SafeMCP.git.
Abstract:Large language models (LLMs) have shown strong performance across natural language tasks, but remain vulnerable to backdoor attacks. Recent model editing-based approaches enable efficient backdoor injection by directly modifying parameters to map specific triggers to attacker-desired responses. However, these methods often suffer from safety fallback, where the model initially responds affirmatively but later reverts to refusals due to safety alignment. In this work, we propose DualEdit, a dual-objective model editing framework that jointly promotes affirmative outputs and suppresses refusal responses. To address two key challenges -- balancing the trade-off between affirmative promotion and refusal suppression, and handling the diversity of refusal expressions -- DualEdit introduces two complementary techniques. (1) Dynamic loss weighting calibrates the objective scale based on the pre-edited model to stabilize optimization. (2) Refusal value anchoring compresses the suppression target space by clustering representative refusal value vectors, reducing optimization conflict from overly diverse token sets. Experiments on safety-aligned LLMs show that DualEdit improves attack success by 9.98\% and reduces safety fallback rate by 10.88\% over baselines.
Abstract:Recent research efforts have investigated how to integrate Large Language Models (LLMs) into recommendation, capitalizing on their semantic comprehension and open-world knowledge for user behavior understanding. These approaches predominantly employ supervised fine-tuning on single-domain user interactions to adapt LLMs for specific recommendation tasks. However, they typically encounter dual challenges: the mismatch between general language representations and domain-specific preference patterns, as well as the limited adaptability to multi-domain recommendation scenarios. To bridge these gaps, we introduce CPRec -- an All-domain Continual Pre-Training framework for Recommendation -- designed to holistically align LLMs with universal user behaviors through the continual pre-training paradigm. Specifically, we first design a unified prompt template and organize users' multi-domain behaviors into domain-specific behavioral sequences and all-domain mixed behavioral sequences that emulate real-world user decision logic. To optimize behavioral knowledge infusion, we devise a Warmup-Stable-Annealing learning rate schedule tailored for the continual pre-training paradigm in recommendation to progressively enhance the LLM's capability in knowledge adaptation from open-world knowledge to universal recommendation tasks. To evaluate the effectiveness of our CPRec, we implement it on a large-scale dataset covering seven domains and conduct extensive experiments on five real-world datasets from two distinct platforms. Experimental results confirm that our continual pre-training paradigm significantly mitigates the semantic-behavioral discrepancy and achieves state-of-the-art performance in all recommendation scenarios. The source code will be released upon acceptance.
Abstract:The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .
Abstract:Product bundling aims to organize a set of thematically related items into a combined bundle for shipment facilitation and item promotion. To increase the exposure of fresh or overstocked products, sellers typically bundle these items with popular products for inventory clearance. This specific task can be formulated as a long-tail product bundling scenario, which leverages the user-item interactions to define the popularity of each item. The inherent popularity bias in the pre-extracted user feedback features and the insufficient utilization of other popularity-independent knowledge may force the conventional bundling methods to find more popular items, thereby struggling with this long-tail bundling scenario. Through intuitive and empirical analysis, we navigate the core solution for this challenge, which is maximally mining the popularity-free features and effectively incorporating them into the bundling process. To achieve this, we propose a Distilled Modality-Oriented Knowledge Transfer framework (DieT) to effectively counter the popularity bias misintroduced by the user feedback features and adhere to the original intent behind the real-world bundling behaviors. Specifically, DieT first proposes the Popularity-free Collaborative Distribution Modeling module (PCD) to capture the popularity-independent information from the bundle-item view, which is proven most effective in the long-tail bundling scenario to enable the directional information transfer. With the tailored Unbiased Bundle-aware Knowledge Transferring module (UBT), DieT can highlight the significance of popularity-free features while mitigating the negative effects of user feedback features in the long-tail scenario via the knowledge distillation paradigm. Extensive experiments on two real-world datasets demonstrate the superiority of DieT over a list of SOTA methods in the long-tail bundling scenario.
Abstract:Recommender systems aim to capture users' personalized preferences from the cast amount of user behaviors, making them pivotal in the era of information explosion. However, the presence of the dynamic preference, the "information cocoons", and the inherent feedback loops in recommendation make users interact with a limited number of items. Conventional recommendation algorithms typically focus on the positive historical behaviors, while neglecting the essential role of negative feedback in user interest understanding. As a promising but easy-to-ignored area, negative sampling is proficients in revealing the genuine negative aspect inherent in user behaviors, emerging as an inescapable procedure in recommendation. In this survey, we first discuss the role of negative sampling in recommendation and thoroughly analyze challenges that consistently impede its progress. Then, we conduct an extensive literature review on the existing negative sampling strategies in recommendation and classify them into five categories with their discrepant techniques. Finally, we detail the insights of the tailored negative sampling strategies in diverse recommendation scenarios and outline an overview of the prospective research directions toward which the community may engage and benefit.
Abstract:Pioneering efforts have verified the effectiveness of the diffusion models in exploring the informative uncertainty for recommendation. Considering the difference between recommendation and image synthesis tasks, existing methods have undertaken tailored refinements to the diffusion and reverse process. However, these approaches typically use the highest-score item in corpus for user interest prediction, leading to the ignorance of the user's generalized preference contained within other items, thereby remaining constrained by the data sparsity issue. To address this issue, this paper presents a novel Plug-in Diffusion Model for Recommendation (PDRec) framework, which employs the diffusion model as a flexible plugin to jointly take full advantage of the diffusion-generating user preferences on all items. Specifically, PDRec first infers the users' dynamic preferences on all items via a time-interval diffusion model and proposes a Historical Behavior Reweighting (HBR) mechanism to identify the high-quality behaviors and suppress noisy behaviors. In addition to the observed items, PDRec proposes a Diffusion-based Positive Augmentation (DPA) strategy to leverage the top-ranked unobserved items as the potential positive samples, bringing in informative and diverse soft signals to alleviate data sparsity. To alleviate the false negative sampling issue, PDRec employs Noise-free Negative Sampling (NNS) to select stable negative samples for ensuring effective model optimization. Extensive experiments and analyses on four datasets have verified the superiority of the proposed PDRec over the state-of-the-art baselines and showcased the universality of PDRec as a flexible plugin for commonly-used sequential encoders in different recommendation scenarios. The code is available in https://github.com/hulkima/PDRec.
Abstract:Multimedia recommendation aims to fuse the multi-modal information of items for feature enrichment to improve the recommendation performance. However, existing methods typically introduce multi-modal information based on collaborative information to improve the overall recommendation precision, while failing to explore its cold-start recommendation performance. Meanwhile, these above methods are only applicable when such multi-modal data is available. To address this problem, this paper proposes a recommendation framework, named Cross-modal Content Inference and Feature Enrichment Recommendation (CIERec), which exploits the multi-modal information to improve its cold-start recommendation performance. Specifically, CIERec first introduces image annotation as the privileged information to help guide the mapping of unified features from the visual space to the semantic space in the training phase. And then CIERec enriches the content representation with the fusion of collaborative, visual, and cross-modal inferred representations, so as to improve its cold-start recommendation performance. Experimental results on two real-world datasets show that the content representations learned by CIERec are able to achieve superior cold-start recommendation performance over existing visually-aware recommendation algorithms. More importantly, CIERec can consistently achieve significant improvements with different conventional visually-aware backbones, which verifies its universality and effectiveness.
Abstract:Cross-domain recommendation (CDR) aims to leverage the users' behaviors in both source and target domains to improve the target domain's performance. Conventional CDR methods typically explore the dual relations between the source and target domains' behavior sequences. However, they ignore modeling the third sequence of mixed behaviors that naturally reflects the user's global preference. To address this issue, we present a novel and model-agnostic Triple sequence learning for cross-domain recommendation (Tri-CDR) framework to jointly model the source, target, and mixed behavior sequences in CDR. Specifically, Tri-CDR independently models the hidden user representations for the source, target, and mixed behavior sequences, and proposes a triple cross-domain attention (TCA) to emphasize the informative knowledge related to both user's target-domain preference and global interests in three sequences. To comprehensively learn the triple correlations, we design a novel triple contrastive learning (TCL) that jointly considers coarse-grained similarities and fine-grained distinctions among three sequences, ensuring the alignment while preserving the information diversity in multi-domain. We conduct extensive experiments and analyses on two real-world datasets with four domains. The significant improvements of Tri-CDR with different sequential encoders on all datasets verify the effectiveness and universality. The source code will be released in the future.