Abstract:Image classification models often demonstrate unstable performance in real-world applications due to variations in image information, driven by differing visual perspectives of subject objects and lighting discrepancies. To mitigate these challenges, existing studies commonly incorporate additional modal information matching the visual data to regularize the model's learning process, enabling the extraction of high-quality visual features from complex image regions. Specifically, in the realm of multimodal learning, cross-modal alignment is recognized as an effective strategy, harmonizing different modal information by learning a domain-consistent latent feature space for visual and semantic features. However, this approach may face limitations due to the heterogeneity between multimodal information, such as differences in feature distribution and structure. To address this issue, we introduce a Multimodal Alignment and Reconstruction Network (MARNet), designed to enhance the model's resistance to visual noise. Importantly, MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains. Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model. It is a plug-and-play framework that can be rapidly integrated into various image classification frameworks, boosting model performance.
Abstract:Multimedia recommendation aims to fuse the multi-modal information of items for feature enrichment to improve the recommendation performance. However, existing methods typically introduce multi-modal information based on collaborative information to improve the overall recommendation precision, while failing to explore its cold-start recommendation performance. Meanwhile, these above methods are only applicable when such multi-modal data is available. To address this problem, this paper proposes a recommendation framework, named Cross-modal Content Inference and Feature Enrichment Recommendation (CIERec), which exploits the multi-modal information to improve its cold-start recommendation performance. Specifically, CIERec first introduces image annotation as the privileged information to help guide the mapping of unified features from the visual space to the semantic space in the training phase. And then CIERec enriches the content representation with the fusion of collaborative, visual, and cross-modal inferred representations, so as to improve its cold-start recommendation performance. Experimental results on two real-world datasets show that the content representations learned by CIERec are able to achieve superior cold-start recommendation performance over existing visually-aware recommendation algorithms. More importantly, CIERec can consistently achieve significant improvements with different conventional visually-aware backbones, which verifies its universality and effectiveness.