Abstract:The rapid advance of Large Language Models (LLMs) has catalyzed the development of Vision-Language Models (VLMs). Monolithic VLMs, which avoid modality-specific encoders, offer a promising alternative to the compositional ones but face the challenge of inferior performance. Most existing monolithic VLMs require tuning pre-trained LLMs to acquire vision abilities, which may degrade their language capabilities. To address this dilemma, this paper presents a novel high-performance monolithic VLM named HoVLE. We note that LLMs have been shown capable of interpreting images, when image embeddings are aligned with text embeddings. The challenge for current monolithic VLMs actually lies in the lack of a holistic embedding module for both vision and language inputs. Therefore, HoVLE introduces a holistic embedding module that converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts. Furthermore, a multi-stage training strategy is carefully designed to empower the holistic embedding module. It is first trained to distill visual features from a pre-trained vision encoder and text embeddings from the LLM, enabling large-scale training with unpaired random images and text tokens. The whole model further undergoes next-token prediction on multi-modal data to align the embeddings. Finally, an instruction-tuning stage is incorporated. Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks, outperforming previous monolithic models by a large margin. Model available at https://huggingface.co/OpenGVLab/HoVLE.
Abstract:Modality differences have led to the development of heterogeneous architectures for vision and language models. While images typically require 2D non-causal modeling, texts utilize 1D causal modeling. This distinction poses significant challenges in constructing unified multi-modal models. This paper explores the feasibility of representing images using 1D causal modeling. We identify an "over-focus" issue in existing 1D causal vision models, where attention overly concentrates on a small proportion of visual tokens. The issue of "over-focus" hinders the model's ability to extract diverse visual features and to receive effective gradients for optimization. To address this, we propose De-focus Attention Networks, which employ learnable bandpass filters to create varied attention patterns. During training, large and scheduled drop path rates, and an auxiliary loss on globally pooled features for global understanding tasks are introduced. These two strategies encourage the model to attend to a broader range of tokens and enhance network optimization. Extensive experiments validate the efficacy of our approach, demonstrating that 1D causal visual representation can perform comparably to 2D non-causal representation in tasks such as global perception, dense prediction, and multi-modal understanding. Code is released at https://github.com/OpenGVLab/De-focus-Attention-Networks.
Abstract:Image recognition and generation have long been developed independently of each other. With the recent trend towards general-purpose representation learning, the development of general representations for both recognition and generation tasks is also promoted. However, preliminary attempts mainly focus on generation performance, but are still inferior on recognition tasks. These methods are modeled in the vector-quantized (VQ) space, whereas leading recognition methods use pixels as inputs. Our key insights are twofold: (1) pixels as inputs are crucial for recognition tasks; (2) VQ tokens as reconstruction targets are beneficial for generation tasks. These observations motivate us to propose an Alternating Denoising Diffusion Process (ADDP) that integrates these two spaces within a single representation learning framework. In each denoising step, our method first decodes pixels from previous VQ tokens, then generates new VQ tokens from the decoded pixels. The diffusion process gradually masks out a portion of VQ tokens to construct the training samples. The learned representations can be used to generate diverse high-fidelity images and also demonstrate excellent transfer performance on recognition tasks. Extensive experiments show that our method achieves competitive performance on unconditional generation, ImageNet classification, COCO detection, and ADE20k segmentation. Importantly, our method represents the first successful development of general representations applicable to both generation and dense recognition tasks. Code shall be released.
Abstract:The captivating realm of Minecraft has attracted substantial research interest in recent years, serving as a rich platform for developing intelligent agents capable of functioning in open-world environments. However, the current research landscape predominantly focuses on specific objectives, such as the popular "ObtainDiamond" task, and has not yet shown effective generalization to a broader spectrum of tasks. Furthermore, the current leading success rate for the "ObtainDiamond" task stands at around 20%, highlighting the limitations of Reinforcement Learning (RL) based controllers used in existing methods. To tackle these challenges, we introduce Ghost in the Minecraft (GITM), a novel framework integrates Large Language Models (LLMs) with text-based knowledge and memory, aiming to create Generally Capable Agents (GCAs) in Minecraft. These agents, equipped with the logic and common sense capabilities of LLMs, can skillfully navigate complex, sparse-reward environments with text-based interactions. We develop a set of structured actions and leverage LLMs to generate action plans for the agents to execute. The resulting LLM-based agent markedly surpasses previous methods, achieving a remarkable improvement of +47.5% in success rate on the "ObtainDiamond" task, demonstrating superior robustness compared to traditional RL-based controllers. Notably, our agent is the first to procure all items in the Minecraft Overworld technology tree, demonstrating its extensive capabilities. GITM does not need any GPU for training, but a single CPU node with 32 CPU cores is enough. This research shows the potential of LLMs in developing capable agents for handling long-horizon, complex tasks and adapting to uncertainties in open-world environments. See the project website at https://github.com/OpenGVLab/GITM.
Abstract:To effectively exploit the potential of large-scale models, various pre-training strategies supported by massive data from different sources are proposed, including supervised pre-training, weakly-supervised pre-training, and self-supervised pre-training. It has been proved that combining multiple pre-training strategies and data from various modalities/sources can greatly boost the training of large-scale models. However, current works adopt a multi-stage pre-training system, where the complex pipeline may increase the uncertainty and instability of the pre-training. It is thus desirable that these strategies can be integrated in a single-stage manner. In this paper, we first propose a general multi-modal mutual information formula as a unified optimization target and demonstrate that all existing approaches are special cases of our framework. Under this unified perspective, we propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training). Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, COCO object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation. Notably, we successfully pre-train a billion-level parameter image backbone and achieve state-of-the-art performance on various benchmarks. Code shall be released at https://github.com/OpenGVLab/M3I-Pretraining.
Abstract:We present a novel bird's-eye-view (BEV) detector with perspective supervision, which converges faster and better suits modern image backbones. Existing state-of-the-art BEV detectors are often tied to certain depth pre-trained backbones like VoVNet, hindering the synergy between booming image backbones and BEV detectors. To address this limitation, we prioritize easing the optimization of BEV detectors by introducing perspective space supervision. To this end, we propose a two-stage BEV detector, where proposals from the perspective head are fed into the bird's-eye-view head for final predictions. To evaluate the effectiveness of our model, we conduct extensive ablation studies focusing on the form of supervision and the generality of the proposed detector. The proposed method is verified with a wide spectrum of traditional and modern image backbones and achieves new SoTA results on the large-scale nuScenes dataset. The code shall be released soon.
Abstract:Self-supervised learning (SSL) has delivered superior performance on a variety of downstream vision tasks. Two main-stream SSL frameworks have been proposed, i.e., Instance Discrimination (ID) and Masked Image Modeling (MIM). ID pulls together the representations of different views from the same image, while avoiding feature collapse. It does well on linear probing but is inferior in detection performance. On the other hand, MIM reconstructs the original content given a masked image. It excels at dense prediction but fails to perform well on linear probing. Their distinctions are caused by neglecting the representation requirements of either semantic alignment or spatial sensitivity. Specifically, we observe that (1) semantic alignment demands semantically similar views to be projected into nearby representation, which can be achieved by contrasting different views with strong augmentations; (2) spatial sensitivity requires to model the local structure within an image. Predicting dense representations with masked image is therefore beneficial because it models the conditional distribution of image content. Driven by these analysis, we propose Siamese Image Modeling (SIM), which predicts the dense representations of an augmented view, based on another masked view from the same image but with different augmentations. Our method uses a Siamese network with two branches. The online branch encodes the first view, and predicts the second view's representation according to the relative positions between these two views. The target branch produces the target by encoding the second view. In this way, we are able to achieve comparable linear probing and dense prediction performances with ID and MIM, respectively. We also demonstrate that decent linear probing result can be obtained without a global loss. Code shall be released.
Abstract:Self-supervised learning has shown its great potential to extract powerful visual representations without human annotations. Various works are proposed to deal with self-supervised learning from different perspectives: (1) contrastive learning methods (e.g., MoCo, SimCLR) utilize both positive and negative samples to guide the training direction; (2) asymmetric network methods (e.g., BYOL, SimSiam) get rid of negative samples via the introduction of a predictor network and the stop-gradient operation; (3) feature decorrelation methods (e.g., Barlow Twins, VICReg) instead aim to reduce the redundancy between feature dimensions. These methods appear to be quite different in the designed loss functions from various motivations. The final accuracy numbers also vary, where different networks and tricks are utilized in different works. In this work, we demonstrate that these methods can be unified into the same form. Instead of comparing their loss functions, we derive a unified formula through gradient analysis. Furthermore, we conduct fair and detailed experiments to compare their performances. It turns out that there is little gap between these methods, and the use of momentum encoder is the key factor to boost performance. From this unified framework, we propose UniGrad, a simple but effective gradient form for self-supervised learning. It does not require a memory bank or a predictor network, but can still achieve state-of-the-art performance and easily adopt other training strategies. Extensive experiments on linear evaluation and many downstream tasks also show its effectiveness. Code shall be released.
Abstract:Loss functions play an important role in training deep-network-based object detectors. The most widely used evaluation metric for object detection is Average Precision (AP), which captures the performance of localization and classification sub-tasks simultaneously. However, due to the non-differentiable nature of the AP metric, traditional object detectors adopt separate differentiable losses for the two sub-tasks. Such a mis-alignment issue may well lead to performance degradation. To address this, existing works seek to design surrogate losses for the AP metric manually, which requires expertise and may still be sub-optimal. In this paper, we propose Parameterized AP Loss, where parameterized functions are introduced to substitute the non-differentiable components in the AP calculation. Different AP approximations are thus represented by a family of parameterized functions in a unified formula. Automatic parameter search algorithm is then employed to search for the optimal parameters. Extensive experiments on the COCO benchmark with three different object detectors (i.e., RetinaNet, Faster R-CNN, and Deformable DETR) demonstrate that the proposed Parameterized AP Loss consistently outperforms existing handcrafted losses. Code is released at https://github.com/fundamentalvision/Parameterized-AP-Loss.
Abstract:We propose a general framework for searching surrogate losses for mainstream semantic segmentation metrics. This is in contrast to existing loss functions manually designed for individual metrics. The searched surrogate losses can generalize well to other datasets and networks. Extensive experiments on PASCAL VOC and Cityscapes demonstrate the effectiveness of our approach. Code shall be released.