Abstract:Modeling the physical contacts between the hand and object is standard for refining inaccurate hand poses and generating novel human grasp in 3D hand-object reconstruction. However, existing methods rely on geometric constraints that cannot be specified or controlled. This paper introduces a novel task of controllable 3D hand-object contact modeling with natural language descriptions. Challenges include i) the complexity of cross-modal modeling from language to contact, and ii) a lack of descriptive text for contact patterns. To address these issues, we propose NL2Contact, a model that generates controllable contacts by leveraging staged diffusion models. Given a language description of the hand and contact, NL2Contact generates realistic and faithful 3D hand-object contacts. To train the model, we build \textit{ContactDescribe}, the first dataset with hand-centered contact descriptions. It contains multi-level and diverse descriptions generated by large language models based on carefully designed prompts (e.g., grasp action, grasp type, contact location, free finger status). We show applications of our model to grasp pose optimization and novel human grasp generation, both based on a textual contact description.
Abstract:Generating face image with specific gaze information has attracted considerable attention. Existing approaches typically input gaze values directly for face generation, which is unnatural and requires annotated gaze datasets for training, thereby limiting its application. In this paper, we present a novel gaze-controllable face generation task. Our approach inputs textual descriptions that describe human gaze and head behavior and generates corresponding face images. Our work first introduces a text-of-gaze dataset containing over 90k text descriptions spanning a dense distribution of gaze and head poses. We further propose a gaze-controllable text-to-face method. Our method contains a sketch-conditioned face diffusion module and a model-based sketch diffusion module. We define a face sketch based on facial landmarks and eye segmentation map. The face diffusion module generates face images from the face sketch, and the sketch diffusion module employs a 3D face model to generate face sketch from text description. Experiments on the FFHQ dataset show the effectiveness of our method. We will release our dataset and code for future research.
Abstract:Face rendering using neural radiance fields (NeRF) is a rapidly developing research area in computer vision. While recent methods primarily focus on controlling facial attributes such as identity and expression, they often overlook the crucial aspect of modeling eyeball rotation, which holds importance for various downstream tasks. In this paper, we aim to learn a face NeRF model that is sensitive to eye movements from multi-view images. We address two key challenges in eye-aware face NeRF learning: how to effectively capture eyeball rotation for training and how to construct a manifold for representing eyeball rotation. To accomplish this, we first fit FLAME, a well-established parametric face model, to the multi-view images considering multi-view consistency. Subsequently, we introduce a new Dynamic Eye-aware NeRF (DeNeRF). DeNeRF transforms 3D points from different views into a canonical space to learn a unified face NeRF model. We design an eye deformation field for the transformation, including rigid transformation, e.g., eyeball rotation, and non-rigid transformation. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our model is capable of generating high-fidelity images with accurate eyeball rotation and non-rigid periocular deformation, even under novel viewing angles. Furthermore, we show that utilizing the rendered images can effectively enhance gaze estimation performance.