Abstract:Scene Coordinate Regression (SCR) is a visual localization technique that utilizes deep neural networks (DNN) to directly regress 2D-3D correspondences for camera pose estimation. However, current SCR methods often face challenges in handling repetitive textures and meaningless areas due to their reliance on implicit triangulation. In this paper, we propose an efficient scene coordinate encoding and relocalization method. Compared with the existing SCR methods, we design a unified architecture for both scene encoding and salient keypoint detection, enabling our system to focus on encoding informative regions, thereby significantly enhancing efficiency. Additionally, we introduce a mechanism that leverages sequential information during both map encoding and relocalization, which strengthens implicit triangulation, particularly in repetitive texture environments. Comprehensive experiments conducted across indoor and outdoor datasets demonstrate that the proposed system outperforms other state-of-the-art (SOTA) SCR methods. Our single-frame relocalization mode improves the recall rate of our baseline by 6.4% and increases the running speed from 56Hz to 90Hz. Furthermore, our sequence-based mode increases the recall rate by 11% while maintaining the original efficiency.
Abstract:In this paper, we present an efficient visual SLAM system designed to tackle both short-term and long-term illumination challenges. Our system adopts a hybrid approach that combines deep learning techniques for feature detection and matching with traditional backend optimization methods. Specifically, we propose a unified convolutional neural network (CNN) that simultaneously extracts keypoints and structural lines. These features are then associated, matched, triangulated, and optimized in a coupled manner. Additionally, we introduce a lightweight relocalization pipeline that reuses the built map, where keypoints, lines, and a structure graph are used to match the query frame with the map. To enhance the applicability of the proposed system to real-world robots, we deploy and accelerate the feature detection and matching networks using C++ and NVIDIA TensorRT. Extensive experiments conducted on various datasets demonstrate that our system outperforms other state-of-the-art visual SLAM systems in illumination-challenging environments. Efficiency evaluations show that our system can run at a rate of 73Hz on a PC and 40Hz on an embedded platform.
Abstract:Column generation (CG) is a vital method to solve large-scale problems by dynamically generating variables. It has extensive applications in common combinatorial optimization, such as vehicle routing and scheduling problems, where each iteration step requires solving an NP-hard constrained shortest path problem. Although some heuristic methods for acceleration already exist, they are not versatile enough to solve different problems. In this work, we propose a reinforcement learning-based hyper-heuristic framework, dubbed RLHH, to enhance the performance of CG. RLHH is a selection module embedded in CG to accelerate convergence and get better integer solutions. In each CG iteration, the RL agent selects a low-level heuristic to construct a reduced network only containing the edges with a greater chance of being part of the optimal solution. In addition, we specify RLHH to solve two typical combinatorial optimization problems: Vehicle Routing Problem with Time Windows (VRPTW) and Bus Driver Scheduling Problem (BDSP). The total cost can be reduced by up to 27.9\% in VRPTW and 15.4\% in BDSP compared to the best lower-level heuristic in our tested scenarios, within equivalent or even less computational time. The proposed RLHH is the first RL-based CG method that outperforms traditional approaches in terms of solution quality, which can promote the application of CG in combinatorial optimization.
Abstract:PyPose is an open-source library for robot learning. It combines a learning-based approach with physics-based optimization, which enables seamless end-to-end robot learning. It has been used in many tasks due to its meticulously designed application programming interface (API) and efficient implementation. From its initial launch in early 2022, PyPose has experienced significant enhancements, incorporating a wide variety of new features into its platform. To satisfy the growing demand for understanding and utilizing the library and reduce the learning curve of new users, we present the fundamental design principle of the imperative programming interface, and showcase the flexible usage of diverse functionalities and modules using an extremely simple Dubins car example. We also demonstrate that the PyPose can be easily used to navigate a real quadruped robot with a few lines of code.
Abstract:Accurate identification of disease genes has consistently been one of the keys to decoding a disease's molecular mechanism. Most current approaches focus on constructing biological networks and utilizing machine learning, especially, deep learning to identify disease genes, but ignore the complex relations between entities in the biological knowledge graph. In this paper, we construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end Knowledge graph completion model for Disease Gene Prediction using interactional tensor decomposition (called KDGene). KDGene introduces an interaction module between the embeddings of entities and relations to tensor decomposition, which can effectively enhance the information interaction in biological knowledge. Experimental results show that KDGene significantly outperforms state-of-the-art algorithms. Furthermore, the comprehensive biological analysis of the case of diabetes mellitus confirms KDGene's ability for identifying new and accurate candidate genes. This work proposes a scalable knowledge graph completion framework to identify disease candidate genes, from which the results are promising to provide valuable references for further wet experiments.
Abstract:Knowledge graph completion (KGC) is one of the effective methods to identify new facts in knowledge graph. Except for a few methods based on graph network, most of KGC methods trend to be trained based on independent triples, while are difficult to take a full account of the information of global network connection contained in knowledge network. To address these issues, in this study, we propose a simple and effective Network-based Pre-training framework for knowledge graph completion (termed NetPeace), which takes into account the information of global network connection and local triple relationships in knowledge graph. Experiments show that in NetPeace framework, multiple KGC models yields consistent and significant improvements on benchmarks (e.g., 36.45% Hits@1 and 27.40% MRR improvements for TuckER on FB15k-237), especially dense knowledge graph. On the challenging low-resource task, NetPeace that benefits from the global features of KG achieves higher performance (104.03% MRR and 143.89% Hit@1 improvements at most) than original models.
Abstract:Visual odometry is crucial for many robotic tasks such as autonomous exploration and path planning. Despite many progresses, existing methods are still not robust enough to dynamic illumination environments. In this paper, we present AirVO, an illumination-robust and accurate stereo visual odometry system based on point and line features. To be robust to illumination variation, we introduce the learning-based feature extraction and matching method and design a novel VO pipeline, including feature tracking, triangulation, key-frame selection, and graph optimization etc. We also employ long line features in the environment to improve the accuracy of the system. Different from the traditional line processing pipelines in visual odometry systems, we propose an illumination-robust line tracking method, where point feature tracking and distribution of point and line features are utilized to match lines. In the experiments, the proposed system is extensively evaluated in environments with dynamic illumination and the results show that it achieves superior performance to the state-of-the-art algorithms.
Abstract:Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and the reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization techniques. Our design goal for PyPose is to make it user-friendly, efficient, and interpretable with a tidy and well-organized architecture. Using an imperative style interface, it can be easily integrated into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and $2^{\text{nd}}$-order optimizers, such as trust region methods. Experiments show that PyPose achieves 3-20$\times$ speedup in computation compared to state-of-the-art libraries. To boost future research, we provide concrete examples across several fields of robotics, including SLAM, inertial navigation, planning, and control.
Abstract:Object encoding and identification are vital for robotic tasks such as autonomous exploration, semantic scene understanding, and re-localization. Previous approaches have attempted to either track objects or generate descriptors for object identification. However, such systems are limited to a "fixed" partial object representation from a single viewpoint. In a robot exploration setup, there is a requirement for a temporally "evolving" global object representation built as the robot observes the object from multiple viewpoints. Furthermore, given the vast distribution of unknown novel objects in the real world, the object identification process must be class-agnostic. In this context, we propose a novel temporal 3D object encoding approach, dubbed AirObject, to obtain global keypoint graph-based embeddings of objects. Specifically, the global 3D object embeddings are generated using a temporal convolutional network across structural information of multiple frames obtained from a graph attention-based encoding method. We demonstrate that AirObject achieves the state-of-the-art performance for video object identification and is robust to severe occlusion, perceptual aliasing, viewpoint shift, deformation, and scale transform, outperforming the state-of-the-art single-frame and sequential descriptors. To the best of our knowledge, AirObject is one of the first temporal object encoding methods.
Abstract:Object encoding and identification is crucial for many robotic tasks such as autonomous exploration and semantic relocalization. Existing works heavily rely on the tracking of detected objects but difficult to recall revisited objects precisely. In this paper, we propose a novel object encoding method based on a graph of key-points. To be robust to the number of key-points detected, we propose a feature sparse encoding and object dense encoding method to ensure that each key-point can only affect a small part of the object descriptors, leading it robust to viewpoint changes, scaling, occlusion, and even object deformation. In the experiments, we show that it achieves superior performance for object identification than the state-of-the art algorithm and is able to provide reliable semantic relocalization. It is a plug-and-play module and we expect that it will play an important role in the robotic applications.