Abstract:Estimating an individual's potential response to continuously varied treatments is crucial for addressing causal questions across diverse domains, from healthcare to social sciences. However, existing methods are limited either to estimating causal effects of binary treatments, or scenarios where all confounding variables are measurable. In this work, we present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves, considering the presence of unobserved confounders using observational data. Leveraging a variational auto-encoder with a Tilted Gaussian prior distribution, ContiVAE models the hidden confounders as latent variables, and is able to predict the potential outcome of any treatment level for each individual while effectively capture the heterogeneity among individuals. Experiments on semi-synthetic datasets show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility. Application on a real-world dataset illustrates its practical utility.
Abstract:The primary challenge in Federated Learning (FL) is to model non-IID distributions across clients, whose fine-grained structure is important to improve knowledge sharing. For example, some knowledge is globally shared across all clients, some is only transferable within a subgroup of clients, and some are client-specific. To capture and exploit this structure, we train models organized in a multi-level structure, called ``Multi-level Additive Models (MAM)'', for better knowledge-sharing across heterogeneous clients and their personalization. In federated MAM (FeMAM), each client is assigned to at most one model per level and its personalized prediction sums up the outputs of models assigned to it across all levels. For the top level, FeMAM trains one global model shared by all clients as FedAvg. For every mid-level, it learns multiple models each assigned to a subgroup of clients, as clustered FL. Every bottom-level model is trained for one client only. In the training objective, each model aims to minimize the residual of the additive predictions by the other models assigned to each client. To approximate the arbitrary structure of non-IID across clients, FeMAM introduces more flexibility and adaptivity to FL by incrementally adding new models to the prediction of each client and reassigning another if necessary, automatically optimizing the knowledge-sharing structure. Extensive experiments show that FeMAM surpasses existing clustered FL and personalized FL methods in various non-IID settings. Our code is available at https://github.com/shutong043/FeMAM.