Abstract:Learning visuomotor policy for multi-task robotic manipulation has been a long-standing challenge for the robotics community. The difficulty lies in the diversity of action space: typically, a goal can be accomplished in multiple ways, resulting in a multimodal action distribution for a single task. The complexity of action distribution escalates as the number of tasks increases. In this work, we propose \textbf{Discrete Policy}, a robot learning method for training universal agents capable of multi-task manipulation skills. Discrete Policy employs vector quantization to map action sequences into a discrete latent space, facilitating the learning of task-specific codes. These codes are then reconstructed into the action space conditioned on observations and language instruction. We evaluate our method on both simulation and multiple real-world embodiments, including both single-arm and bimanual robot settings. We demonstrate that our proposed Discrete Policy outperforms a well-established Diffusion Policy baseline and many state-of-the-art approaches, including ACT, Octo, and OpenVLA. For example, in a real-world multi-task training setting with five tasks, Discrete Policy achieves an average success rate that is 26\% higher than Diffusion Policy and 15\% higher than OpenVLA. As the number of tasks increases to 12, the performance gap between Discrete Policy and Diffusion Policy widens to 32.5\%, further showcasing the advantages of our approach. Our work empirically demonstrates that learning multi-task policies within the latent space is a vital step toward achieving general-purpose agents.
Abstract:Diffusion Policy is a powerful technique tool for learning end-to-end visuomotor robot control. It is expected that Diffusion Policy possesses scalability, a key attribute for deep neural networks, typically suggesting that increasing model size would lead to enhanced performance. However, our observations indicate that Diffusion Policy in transformer architecture (\DP) struggles to scale effectively; even minor additions of layers can deteriorate training outcomes. To address this issue, we introduce Scalable Diffusion Transformer Policy for visuomotor learning. Our proposed method, namely \textbf{\methodname}, introduces two modules that improve the training dynamic of Diffusion Policy and allow the network to better handle multimodal action distribution. First, we identify that \DP~suffers from large gradient issues, making the optimization of Diffusion Policy unstable. To resolve this issue, we factorize the feature embedding of observation into multiple affine layers, and integrate it into the transformer blocks. Additionally, our utilize non-causal attention which allows the policy network to \enquote{see} future actions during prediction, helping to reduce compounding errors. We demonstrate that our proposed method successfully scales the Diffusion Policy from 10 million to 1 billion parameters. This new model, named \methodname, can effectively scale up the model size with improved performance and generalization. We benchmark \methodname~across 50 different tasks from MetaWorld and find that our largest \methodname~outperforms \DP~with an average improvement of 21.6\%. Across 7 real-world robot tasks, our ScaleDP demonstrates an average improvement of 36.25\% over DP-T on four single-arm tasks and 75\% on three bimanual tasks. We believe our work paves the way for scaling up models for visuomotor learning. The project page is available at scaling-diffusion-policy.github.io.
Abstract:It is fundamentally challenging for robots to serve as useful assistants in human environments because this requires addressing a spectrum of sub-problems across robotics, including perception, language understanding, reasoning, and planning. The recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated their exceptional abilities in solving complex mathematical problems, mastering commonsense and abstract reasoning. This has led to the recent utilization of MLLMs as the brain in robotic systems, enabling these models to conduct high-level planning prior to triggering low-level control actions for task execution. However, it remains uncertain whether existing MLLMs are reliable in serving the brain role of robots. In this study, we introduce the first benchmark for evaluating Multimodal LLM for Robotic (MMRo) benchmark, which tests the capability of MLLMs for robot applications. Specifically, we identify four essential capabilities perception, task planning, visual reasoning, and safety measurement that MLLMs must possess to qualify as the robot's central processing unit. We have developed several scenarios for each capability, resulting in a total of 14 metrics for evaluation. We present experimental results for various MLLMs, including both commercial and open-source models, to assess the performance of existing systems. Our findings indicate that no single model excels in all areas, suggesting that current MLLMs are not yet trustworthy enough to serve as the cognitive core for robots. Our data can be found in https://mm-robobench.github.io/.
Abstract:While the exploration for embodied AI has spanned multiple decades, it remains a persistent challenge to endow agents with human-level intelligence, including perception, learning, reasoning, decision-making, control, and generalization capabilities, so that they can perform general-purpose tasks in open, unstructured, and dynamic environments. Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks. They not only provide a solid cornerstone for integrating basic modules into embodied AI systems but also shed light on how to scale up robot learning from a methodological perspective. This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control. Moreover, we showcase their commonly used datasets, simulators, and benchmarks. Importantly, we emphasize the critical challenges intrinsic to this field and delineate potential avenues for future research, contributing to advancing the frontier of academic and industrial discourse.
Abstract:The language-conditioned robotic manipulation aims to transfer natural language instructions into executable actions, from simple pick-and-place to tasks requiring intent recognition and visual reasoning. Inspired by the dual process theory in cognitive science, which suggests two parallel systems of fast and slow thinking in human decision-making, we introduce Robotics with Fast and Slow Thinking (RFST), a framework that mimics human cognitive architecture to classify tasks and makes decisions on two systems based on instruction types. Our RFST consists of two key components: 1) an instruction discriminator to determine which system should be activated based on the current user instruction, and 2) a slow-thinking system that is comprised of a fine-tuned vision language model aligned with the policy networks, which allows the robot to recognize user intention or perform reasoning tasks. To assess our methodology, we built a dataset featuring real-world trajectories, capturing actions ranging from spontaneous impulses to tasks requiring deliberate contemplation. Our results, both in simulation and real-world scenarios, confirm that our approach adeptly manages intricate tasks that demand intent recognition and reasoning. The project is available at https://jlm-z.github.io/RSFT/
Abstract:Imitation learning (IL), aiming to learn optimal control policies from expert demonstrations, has been an effective method for robot manipulation tasks. However, previous IL methods either only use expensive expert demonstrations and omit imperfect demonstrations or rely on interacting with the environment and learning from online experiences. In the context of robotic manipulation, we aim to conquer the above two challenges and propose a novel framework named Similarity Weighted Behavior Transformer (SWBT). SWBT effectively learn from both expert and imperfect demonstrations without interaction with environments. We reveal that the easy-to-get imperfect demonstrations, such as forward and inverse dynamics, significantly enhance the network by learning fruitful information. To the best of our knowledge, we are the first to attempt to integrate imperfect demonstrations into the offline imitation learning setting for robot manipulation tasks. Extensive experiments on the ManiSkill2 benchmark built on the high-fidelity Sapien simulator and real-world robotic manipulation tasks demonstrated that the proposed method can extract better features and improve the success rates for all tasks. Our code will be released upon acceptance of the paper.
Abstract:Recent work on visual representation learning has shown to be efficient for robotic manipulation tasks. However, most existing works pretrained the visual backbone solely on 2D images or egocentric videos, ignoring the fact that robots learn to act in 3D space, which is hard to learn from 2D observation. In this paper, we examine the effectiveness of pretraining for vision backbone with public-available large-scale 3D data to improve manipulation policy learning. Our method, namely Depth-aware Pretraining for Robotics (DPR), enables an RGB-only backbone to learn 3D scene representations from self-supervised contrastive learning, where depth information serves as auxiliary knowledge. No 3D information is necessary during manipulation policy learning and inference, making our model enjoy both efficiency and effectiveness in 3D space manipulation. Furthermore, we introduce a new way to inject robots' proprioception into the policy networks that makes the manipulation model robust and generalizable. We demonstrate in experiments that our proposed framework improves performance on unseen objects and visual environments for various robotics tasks on both simulated and real robots.
Abstract:Humans interpret scenes by recognizing both the identities and positions of objects in their observations. For a robot to perform tasks such as \enquote{pick and place}, understanding both what the objects are and where they are located is crucial. While the former has been extensively discussed in the literature that uses the large language model to enrich the text descriptions, the latter remains underexplored. In this work, we introduce the \textit{Object-Centric Instruction Augmentation (OCI)} framework to augment highly semantic and information-dense language instruction with position cues. We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction, thus aiding the policy network in mastering actions for versatile manipulation. Additionally, we present a feature reuse mechanism to integrate the vision-language features from off-the-shelf pre-trained MLLM into policy networks. Through a series of simulated and real-world robotic tasks, we demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.
Abstract:Recent advancements in Natural Language Processing (NLP) have led to the development of NLP-based recommender systems that have shown superior performance. However, current models commonly treat items as mere IDs and adopt discriminative modeling, resulting in limitations of (1) fully leveraging the content information of items and the language modeling capabilities of NLP models; (2) interpreting user interests to improve relevance and diversity; and (3) adapting practical circumstances such as growing item inventories. To address these limitations, we present GPT4Rec, a novel and flexible generative framework inspired by search engines. It first generates hypothetical "search queries" given item titles in a user's history, and then retrieves items for recommendation by searching these queries. The framework overcomes previous limitations by learning both user and item embeddings in the language space. To well-capture user interests with different aspects and granularity for improving relevance and diversity, we propose a multi-query generation technique with beam search. The generated queries naturally serve as interpretable representations of user interests and can be searched to recommend cold-start items. With GPT-2 language model and BM25 search engine, our framework outperforms state-of-the-art methods by $75.7\%$ and $22.2\%$ in Recall@K on two public datasets. Experiments further revealed that multi-query generation with beam search improves both the diversity of retrieved items and the coverage of a user's multi-interests. The adaptiveness and interpretability of generated queries are discussed with qualitative case studies.
Abstract:Acoustic signal acts as an essential input to many systems. However, the pure acoustic signal is very difficult to extract, especially in noisy environments. Existing beamforming systems are able to extract the signal transmitted from certain directions. However, since microphones are centrally deployed, these systems have limited coverage and low spatial resolution. We overcome the above limitations and present ChordMics, a distributed beamforming system. By leveraging the spatial diversity of the distributed microphones, ChordMics is able to extract the acoustic signal from arbitrary points. To realize such a system, we further address the fundamental challenge in distributed beamforming: aligning the signals captured by distributed and unsynchronized microphones. We implement ChordMics and evaluate its performance under both LOS and NLOS scenarios. The evaluation results tell that ChordMics can deliver higher SINR than the centralized microphone array. The average performance gain is up to 15dB.