Abstract:Text-based person re-identification (Re-ID) is a challenging topic in the field of complex multimodal analysis, its ultimate aim is to recognize specific pedestrians by scrutinizing attributes/natural language descriptions. Despite the wide range of applicable areas such as security surveillance, video retrieval, person tracking, and social media analytics, there is a notable absence of comprehensive reviews dedicated to summarizing the text-based person Re-ID from a technical perspective. To address this gap, we propose to introduce a taxonomy spanning Evaluation, Strategy, Architecture, and Optimization dimensions, providing a comprehensive survey of the text-based person Re-ID task. We start by laying the groundwork for text-based person Re-ID, elucidating fundamental concepts related to attribute/natural language-based identification. Then a thorough examination of existing benchmark datasets and metrics is presented. Subsequently, we further delve into prevalent feature extraction strategies employed in text-based person Re-ID research, followed by a concise summary of common network architectures within the domain. Prevalent loss functions utilized for model optimization and modality alignment in text-based person Re-ID are also scrutinized. To conclude, we offer a concise summary of our findings, pinpointing challenges in text-based person Re-ID. In response to these challenges, we outline potential avenues for future open-set text-based person Re-ID and present a baseline architecture for text-based pedestrian image generation-guided re-identification(TBPGR).
Abstract:This report introduces LLaMandement, a state-of-the-art Large Language Model, fine-tuned by the French government and designed to enhance the efficiency and efficacy of processing parliamentary sessions (including the production of bench memoranda and documents required for interministerial meetings) by generating neutral summaries of legislative proposals. Addressing the administrative challenges of manually processing a growing volume of legislative amendments, LLaMandement stands as a significant legal technological milestone, providing a solution that exceeds the scalability of traditional human efforts while matching the robustness of a specialized legal drafter. We release all our fine-tuned models and training data to the community.
Abstract:Token filtering to reduce irrelevant tokens prior to self-attention is a straightforward way to enable efficient vision Transformer. This is the first work to view token filtering from a feature selection perspective, where we weigh the importance of a token according to how much it can change the loss once masked. If the loss changes greatly after masking a token of interest, it means that such a token has a significant impact on the final decision and is thus relevant. Otherwise, the token is less important for the final decision, so it can be filtered out. After applying the token filtering module generalized from the whole training data, the token number fed to the self-attention module can be obviously reduced in the inference phase, leading to much fewer computations in all the subsequent self-attention layers. The token filter can be realized using a very simple network, where we utilize multi-layer perceptron. Except for the uniqueness of performing token filtering only once from the very beginning prior to self-attention, the other core feature making our method different from the other token filters lies in the predictability of token impact from a feature selection point of view. The experiments show that the proposed method provides an efficient way to approach a light weighted model after optimized with a backbone by means of fine tune, which is easy to be deployed in comparison with the existing methods based on training from scratch.
Abstract:Semantic image editing provides users with a flexible tool to modify a given image guided by a corresponding segmentation map. In this task, the features of the foreground objects and the backgrounds are quite different. However, all previous methods handle backgrounds and objects as a whole using a monolithic model. Consequently, they remain limited in processing content-rich images and suffer from generating unrealistic objects and texture-inconsistent backgrounds. To address this issue, we propose a novel paradigm, \textbf{S}emantic \textbf{I}mage \textbf{E}diting by \textbf{D}isentangling \textbf{O}bject and \textbf{B}ackground (\textbf{SIEDOB}), the core idea of which is to explicitly leverages several heterogeneous subnetworks for objects and backgrounds. First, SIEDOB disassembles the edited input into background regions and instance-level objects. Then, we feed them into the dedicated generators. Finally, all synthesized parts are embedded in their original locations and utilize a fusion network to obtain a harmonized result. Moreover, to produce high-quality edited images, we propose some innovative designs, including Semantic-Aware Self-Propagation Module, Boundary-Anchored Patch Discriminator, and Style-Diversity Object Generator, and integrate them into SIEDOB. We conduct extensive experiments on Cityscapes and ADE20K-Room datasets and exhibit that our method remarkably outperforms the baselines, especially in synthesizing realistic and diverse objects and texture-consistent backgrounds.
Abstract:Face inpainting aims at plausibly predicting missing pixels of face images within a corrupted region. Most existing methods rely on generative models learning a face image distribution from a big dataset, which produces uncontrollable results, especially with large-scale missing regions. To introduce strong control for face inpainting, we propose a novel reference-guided face inpainting method that fills the large-scale missing region with identity and texture control guided by a reference face image. However, generating high-quality results under imposing two control signals is challenging. To tackle such difficulty, we propose a dual control one-stage framework that decouples the reference image into two levels for flexible control: High-level identity information and low-level texture information, where the identity information figures out the shape of the face and the texture information depicts the component-aware texture. To synthesize high-quality results, we design two novel modules referred to as Half-AdaIN and Component-Wise Style Injector (CWSI) to inject the two kinds of control information into the inpainting processing. Our method produces realistic results with identity and texture control faithful to reference images. To the best of our knowledge, it is the first work to concurrently apply identity and component-level controls in face inpainting to promise more precise and controllable results. Code is available at https://github.com/WuyangLuo/RefFaceInpainting
Abstract:Semantic image editing utilizes local semantic label maps to generate the desired content in the edited region. A recent work borrows SPADE block to achieve semantic image editing. However, it cannot produce pleasing results due to style discrepancy between the edited region and surrounding pixels. We attribute this to the fact that SPADE only uses an image-independent local semantic layout but ignores the image-specific styles included in the known pixels. To address this issue, we propose a style-preserved modulation (SPM) comprising two modulations processes: The first modulation incorporates the contextual style and semantic layout, and then generates two fused modulation parameters. The second modulation employs the fused parameters to modulate feature maps. By using such two modulations, SPM can inject the given semantic layout while preserving the image-specific context style. Moreover, we design a progressive architecture for generating the edited content in a coarse-to-fine manner. The proposed method can obtain context-consistent results and significantly alleviate the unpleasant boundary between the generated regions and the known pixels.
Abstract:Few researches have studied simultaneous detection of smoke and flame accompanying fires due to their different physical natures that lead to uncertain fluid patterns. In this study, we collect a large image data set to re-label them as a multi-label image classification problem so as to identify smoke and flame simultaneously. In order to solve the generalization ability of the detection model on account of the movable fluid objects with uncertain shapes like fire and smoke, and their not compactible natures as well as the complex backgrounds with high variations, we propose a data augment method by random image stitch to deploy resizing, deforming, position variation, and background altering so as to enlarge the view of the learner. Moreover, we propose a self-learning data augment method by using the class activation map to extract the highly trustable region as new data source of positive examples to further enhance the data augment. By the mutual reinforcement between the data augment and the detection model that are performed iteratively, both modules make progress in an evolutionary manner. Experiments show that the proposed method can effectively improve the generalization performance of the model for concurrent smoke and fire detection.
Abstract:Non-contact facial video-based heart rate estimation using remote photoplethysmography (rPPG) has shown great potential in many applications (e.g., remote health care) and achieved creditable results in constrained scenarios. However, practical applications require results to be accurate even under complex environment with head movement and unstable illumination. Therefore, improving the performance of rPPG in complex environment has become a key challenge. In this paper, we propose a novel video embedding method that embeds each facial video sequence into a feature map referred to as Multi-scale Adaptive Spatial and Temporal Map with Overlap (MAST_Mop), which contains not only vital information but also surrounding information as reference, which acts as the mirror to figure out the homogeneous perturbations imposed on foreground and background simultaneously, such as illumination instability. Correspondingly, we propose a two-stream Transformer model to map the MAST_Mop into heart rate (HR), where one stream follows the pulse signal in the facial area while the other figures out the perturbation signal from the surrounding region such that the difference of the two channels leads to adaptive noise cancellation. Our approach significantly outperforms all current state-of-the-art methods on two public datasets MAHNOB-HCI and VIPL-HR. As far as we know, it is the first work with Transformer as backbone to capture the temporal dependencies in rPPGs and apply the two stream scheme to figure out the interference from backgrounds as mirror of the corresponding perturbation on foreground signals for noise tolerating.
Abstract:A novel instance-based method for the classification of electroencephalography (EEG) signals is presented and evaluated in this paper. The non-stationary nature of the EEG signals, coupled with the demanding task of pattern recognition with limited training data as well as the potentially noisy signal acquisition conditions, have motivated the work reported in this study. The proposed adaptive template enhancement mechanism transforms the feature-level instances by treating each feature dimension separately, hence resulting in improved class separation and better query-class matching. The proposed new instance-based learning algorithm is compared with a few related algorithms in a number of scenarios. A clinical grade 64-electrode EEG database, as well as a low-quality (high-noise level) EEG database obtained with a low-cost system using a single dry sensor have been used for evaluations in biometric person recognition. The proposed approach demonstrates significantly improved classification accuracy in both identification and verification scenarios. In particular, this new method is seen to provide a good classification performance for noisy EEG data, indicating its potential suitability for a wide range of applications.
Abstract:We explore the black-box adversarial attack on video recognition models. Attacks are only performed on selected key regions and key frames to reduce the high computation cost of searching adversarial perturbations on a video due to its high dimensionality. To select key frames, one way is to use heuristic algorithms to evaluate the importance of each frame and choose the essential ones. However, it is time inefficient on sorting and searching. In order to speed up the attack process, we propose a reinforcement learning based frame selection strategy. Specifically, the agent explores the difference between the original class and the target class of videos to make selection decisions. It receives rewards from threat models which indicate the quality of the decisions. Besides, we also use saliency detection to select key regions and only estimate the sign of gradient instead of the gradient itself in zeroth order optimization to further boost the attack process. We can use the trained model directly in the untargeted attack or with little fine-tune in the targeted attack, which saves computation time. A range of empirical results on real datasets demonstrate the effectiveness and efficiency of the proposed method.