Abstract:We introduce two convolutional neural network (CNN) architectures, inspired by the Merriman-Bence-Osher (MBO) algorithm and by cellular automatons, to model and learn threshold dynamics for front evolution from video data. The first model, termed the (single-dynamics) MBO network, learns a specific kernel and threshold for each input video without adapting to new dynamics, while the second, a meta-learning MBO network, generalizes across diverse threshold dynamics by adapting its parameters per input. Both models are evaluated on synthetic and real-world videos (ice melting and fire front propagation), with performance metrics indicating effective reconstruction and extrapolation of evolving boundaries, even under noisy conditions. Empirical results highlight the robustness of both networks across varied synthetic and real-world dynamics.
Abstract:Recently, large language models (LLMs) have demonstrated impressive capabilities in dealing with new tasks with the help of in-context learning (ICL). In the study of Large Vision-Language Models (LVLMs), when implementing ICL, researchers usually adopts the naive strategies like fixed demonstrations across different samples, or selecting demonstrations directly via a visual-language embedding model. These methods does not guarantee the configured demonstrations fit the need of the LVLMs. To address this issue, we now propose a novel framework, \underline{d}emonstration \underline{r}etriever for large m\underline{u}lti-modal \underline{m}odel (DRUM), which fine-tunes the visual-language embedding model to better meet the LVLM's needs. First, we discuss the retrieval strategies for a visual-language task, assuming an embedding model is given. And we propose to concate the image and text embeddings to enhance the retrieval performance. Second, we propose to re-rank the demonstrations retrieved by the embedding model via the LVLM's feedbacks, and calculate a list-wise ranking loss for training the embedding model. Third, we propose an iterative demonstration mining strategy to improve the training of the embedding model. Through extensive experiments on 3 types of visual-language tasks, 7 benchmark datasets, our DRUM framework is proven to be effective in boosting the LVLM's in-context learning performance via retrieving more proper demonstrations.
Abstract:Low-rank adaptation (LoRA) and its mixture-of-experts (MOE) variants are highly effective parameter-efficient fine-tuning (PEFT) methods. However, they introduce significant latency in multi-tenant settings due to the LoRA modules and MOE routers added to multiple linear modules in the Transformer layer. To address this issue, we propose Mixture of Low-Rank Adaptation (MiLoRA), a novel and efficient LoRA variant. MiLoRA differs from previous MOE-style LoRA methods by considering each LoRA module as an expert and employing a prompt-aware routing mechanism. This mechanism calculates expert routing results once before generating the first new token and reuses these results for subsequent tokens, reducing latency. Extensive experiments and analysis on commonsense reasoning tasks, math reasoning tasks, and widely used LLM evaluation benchmarks demonstrate that MiLoRA consistently outperforms strong PEFT baselines with comparable tunable parameter budgets. Additionally, MiLoRA significantly reduces latency in multi-tenant settings compared to previous LoRA-based methods.
Abstract:In an earlier work by a subset of the present authors, the method of the so-called neural deflation was introduced towards identifying a complete set of functionally independent conservation laws of a nonlinear dynamical system. Here, we extend by a significant step this proposal. Instead of using the explicit knowledge of the underlying equations of motion, we develop the method directly from system trajectories. This is crucial towards enhancing the practical implementation of the method in scenarios where solely data reflecting discrete snapshots of the system are available. We showcase the results of the method and the number of associated conservation laws obtained in a diverse range of examples including 1D and 2D harmonic oscillators, the Toda lattice, the Fermi-Pasta-Ulam-Tsingou lattice and the Calogero-Moser system.
Abstract:Deep segmentation networks achieve high performance when trained on specific datasets. However, in clinical practice, it is often desirable that pretrained segmentation models can be dynamically extended to enable segmenting new organs without access to previous training datasets or without training from scratch. This would ensure a much more efficient model development and deployment paradigm accounting for the patient privacy and data storage issues. This clinically preferred process can be viewed as a continual semantic segmentation (CSS) problem. Previous CSS works would either experience catastrophic forgetting or lead to unaffordable memory costs as models expand. In this work, we propose a new continual whole-body organ segmentation model with light-weighted low-rank adaptation (LoRA). We first train and freeze a pyramid vision transformer (PVT) base segmentation model on the initial task, then continually add light-weighted trainable LoRA parameters to the frozen model for each new learning task. Through a holistically exploration of the architecture modification, we identify three most important layers (i.e., patch-embedding, multi-head attention and feed forward layers) that are critical in adapting to the new segmentation tasks, while retaining the majority of the pretrained parameters fixed. Our proposed model continually segments new organs without catastrophic forgetting and meanwhile maintaining a low parameter increasing rate. Continually trained and tested on four datasets covering different body parts of a total of 121 organs, results show that our model achieves high segmentation accuracy, closely reaching the PVT and nnUNet upper bounds, and significantly outperforms other regularization-based CSS methods. When comparing to the leading architecture-based CSS method, our model has a substantial lower parameter increasing rate while achieving comparable performance.
Abstract:Due to their substantial sizes, large language models (LLMs) are typically deployed within a single-backbone multi-tenant framework. In this setup, a single instance of an LLM backbone must cater to multiple users or tasks through the application of various parameter-efficient fine-tuning (PEFT) models. Despite the availability of numerous effective PEFT techniques such as LoRA, there remains a need for a PEFT approach that achieves both high efficiency during inference and competitive performance on downstream tasks. In this research, we introduce a new and straightforward PEFT methodology named \underline{P}rompt D\underline{E}pen\underline{D}ent \underline{R}epresentation M\underline{O}dification (PEDRO). The proposed method involves integrating a lightweight vector generator into each Transformer layer, which generates vectors contingent upon the input prompts. These vectors then modify the hidden representations created by the LLM through a dot product operation, thereby influencing the semantic output and generated content of the model. Extensive experimentation across a variety of tasks indicates that: (a) PEDRO surpasses recent PEFT benchmarks when using a similar number of tunable parameters. (b) Under the single-backbone multi-tenant deployment model, PEDRO exhibits superior efficiency compared to LoRA, indicating significant industrial potential.
Abstract:In the fields of computer vision and robotics, accurate pixel-level correspondences are essential for enabling advanced tasks such as structure-from-motion and simultaneous localization and mapping. Recent correspondence pruning methods usually focus on learning local consistency through k-nearest neighbors, which makes it difficult to capture robust context for each correspondence. We propose CorrAdaptor, a novel architecture that introduces a dual-branch structure capable of adaptively adjusting local contexts through both explicit and implicit local graph learning. Specifically, the explicit branch uses KNN-based graphs tailored for initial neighborhood identification, while the implicit branch leverages a learnable matrix to softly assign neighbors and adaptively expand the local context scope, significantly enhancing the model's robustness and adaptability to complex image variations. Moreover, we design a motion injection module to integrate motion consistency into the network to suppress the impact of outliers and refine local context learning, resulting in substantial performance improvements. The experimental results on extensive correspondence-based tasks indicate that our CorrAdaptor achieves state-of-the-art performance both qualitatively and quantitatively. The code and pre-trained models are available at https://github.com/TaoWangzj/CorrAdaptor.
Abstract:Large language models (LLMs) have performed remarkably well in various natural language processing tasks by benchmarking, including in the Western medical domain. However, the professional evaluation benchmarks for LLMs have yet to be covered in the traditional Chinese medicine(TCM) domain, which has a profound history and vast influence. To address this research gap, we introduce TCM-Bench, an comprehensive benchmark for evaluating LLM performance in TCM. It comprises the TCM-ED dataset, consisting of 5,473 questions sourced from the TCM Licensing Exam (TCMLE), including 1,300 questions with authoritative analysis. It covers the core components of TCMLE, including TCM basis and clinical practice. To evaluate LLMs beyond accuracy of question answering, we propose TCMScore, a metric tailored for evaluating the quality of answers generated by LLMs for TCM related questions. It comprehensively considers the consistency of TCM semantics and knowledge. After conducting comprehensive experimental analyses from diverse perspectives, we can obtain the following findings: (1) The unsatisfactory performance of LLMs on this benchmark underscores their significant room for improvement in TCM. (2) Introducing domain knowledge can enhance LLMs' performance. However, for in-domain models like ZhongJing-TCM, the quality of generated analysis text has decreased, and we hypothesize that their fine-tuning process affects the basic LLM capabilities. (3) Traditional metrics for text generation quality like Rouge and BertScore are susceptible to text length and surface semantic ambiguity, while domain-specific metrics such as TCMScore can further supplement and explain their evaluation results. These findings highlight the capabilities and limitations of LLMs in the TCM and aim to provide a more profound assistance to medical research.
Abstract:Soft prompt tuning is a widely studied parameter-efficient fine-tuning method. However, it has a clear drawback: many soft tokens must be inserted into the input sequences to guarantee downstream performance. As a result, soft prompt tuning is less considered than Low-rank adaptation (LoRA) in the large language modeling (LLM) era. In this work, we propose a novel prompt tuning method, Instruction-Aware Prompt Tuning (IAPT), that requires only four soft tokens. First, we install a parameter-efficient soft prompt generator at each Transformer layer to generate idiosyncratic soft prompts for each input instruction. The generated soft prompts can be seen as a semantic summary of the input instructions and can effectively guide the output generation. Second, the soft prompt generators are modules with a bottleneck architecture consisting of a self-attention pooling operation, two linear projections, and an activation function. Pilot experiments show that prompt generators at different Transformer layers require different activation functions. Thus, we propose to learn the idiosyncratic activation functions for prompt generators automatically with the help of rational functions. We have conducted experiments on various tasks, and the experimental results demonstrate that (a) our IAPT method can outperform the recent baselines with comparable tunable parameters. (b) Our IAPT method is more efficient than LoRA under the single-backbone multi-tenant setting.
Abstract:We present a novel method for training score-based generative models which uses nonlinear noising dynamics to improve learning of structured distributions. Generalizing to a nonlinear drift allows for additional structure to be incorporated into the dynamics, thus making the training better adapted to the data, e.g., in the case of multimodality or (approximate) symmetries. Such structure can be obtained from the data by an inexpensive preprocessing step. The nonlinear dynamics introduces new challenges into training which we address in two ways: 1) we develop a new nonlinear denoising score matching (NDSM) method, 2) we introduce neural control variates in order to reduce the variance of the NDSM training objective. We demonstrate the effectiveness of this method on several examples: a) a collection of low-dimensional examples, motivated by clustering in latent space, b) high-dimensional images, addressing issues with mode collapse, small training sets, and approximate symmetries, the latter being a challenge for methods based on equivariant neural networks, which require exact symmetries.