Abstract:Diffusion-based stylization methods typically denoise from a specific partial noise state for image-to-image and video-to-video tasks. This multi-step diffusion process is computationally expensive and hinders real-world application. A promising solution to speed up the process is to obtain few-step consistency models through trajectory distillation. However, current consistency models only force the initial-step alignment between the probability flow ODE (PF-ODE) trajectories of the student and the imperfect teacher models. This training strategy can not ensure the consistency of whole trajectories. To address this issue, we propose single trajectory distillation (STD) starting from a specific partial noise state. We introduce a trajectory bank to store the teacher model's trajectory states, mitigating the time cost during training. Besides, we use an asymmetric adversarial loss to enhance the style and quality of the generated images. Extensive experiments on image and video stylization demonstrate that our method surpasses existing acceleration models in terms of style similarity and aesthetic evaluations. Our code and results will be available on the project page: https://single-trajectory-distillation.github.io.
Abstract:Proton resonance frequency (PRF) based MR thermometry is essential for focused ultrasound (FUS) thermal ablation therapies. This work aims to enhance temporal resolution in dynamic MR temperature map reconstruction using an improved deep learning method. The training-optimized methods and five classical neural networks were applied on the 2-fold and 4-fold under-sampling k-space data to reconstruct the temperature maps. The enhanced training modules included offline/online data augmentations, knowledge distillation, and the amplitude-phase decoupling loss function. The heating experiments were performed by a FUS transducer on phantom and ex vivo tissues, respectively. These data were manually under-sampled to imitate acceleration procedures and trained in our method to get the reconstruction model. The additional dozen or so testing datasets were separately obtained for evaluating the real-time performance and temperature accuracy. Acceleration factors of 1.9 and 3.7 were found for 2 times and 4 times k-space under-sampling strategies and the ResUNet-based deep learning reconstruction performed exceptionally well. In 2-fold acceleration scenario, the RMSE of temperature map patches provided the values of 0.888 degree centigrade and 1.145 degree centigrade on phantom and ex vivo testing datasets. The DICE value of temperature areas enclosed by 43 degree centigrade isotherm was 0.809, and the Bland-Altman analysis showed a bias of -0.253 degree centigrade with the apart of plus or minus 2.16 degree centigrade. In 4 times under-sampling case, these evaluating values decreased by approximately 10%. This study demonstrates that deep learning-based reconstruction can significantly enhance the accuracy and efficiency of MR thermometry for clinical FUS thermal therapies.
Abstract:Time series forecasting represents a significant and challenging task across various fields. Recently, methods based on mode decomposition have dominated the forecasting of complex time series because of the advantages of capturing local characteristics and extracting intrinsic modes from data. Unfortunately, most models fail to capture the implied volatilities that contain significant information. To enhance the forecasting of current, rapidly evolving, and volatile time series, we propose a novel decomposition-ensemble paradigm, the VMD-LSTM-GARCH model. The Variational Mode Decomposition algorithm is employed to decompose the time series into K sub-modes. Subsequently, the GARCH model extracts the volatility information from these sub-modes, which serve as the input for the LSTM. The numerical and volatility information of each sub-mode is utilized to train a Long Short-Term Memory network. This network predicts the sub-mode, and then we aggregate the predictions from all sub-modes to produce the output. By integrating econometric and artificial intelligence methods, and taking into account both the numerical and volatility information of the time series, our proposed model demonstrates superior performance in time series forecasting, as evidenced by the significant decrease in MSE, RMSE, and MAPE in our comparative experimental results.