Proton resonance frequency (PRF) based MR thermometry is essential for focused ultrasound (FUS) thermal ablation therapies. This work aims to enhance temporal resolution in dynamic MR temperature map reconstruction using an improved deep learning method. The training-optimized methods and five classical neural networks were applied on the 2-fold and 4-fold under-sampling k-space data to reconstruct the temperature maps. The enhanced training modules included offline/online data augmentations, knowledge distillation, and the amplitude-phase decoupling loss function. The heating experiments were performed by a FUS transducer on phantom and ex vivo tissues, respectively. These data were manually under-sampled to imitate acceleration procedures and trained in our method to get the reconstruction model. The additional dozen or so testing datasets were separately obtained for evaluating the real-time performance and temperature accuracy. Acceleration factors of 1.9 and 3.7 were found for 2 times and 4 times k-space under-sampling strategies and the ResUNet-based deep learning reconstruction performed exceptionally well. In 2-fold acceleration scenario, the RMSE of temperature map patches provided the values of 0.888 degree centigrade and 1.145 degree centigrade on phantom and ex vivo testing datasets. The DICE value of temperature areas enclosed by 43 degree centigrade isotherm was 0.809, and the Bland-Altman analysis showed a bias of -0.253 degree centigrade with the apart of plus or minus 2.16 degree centigrade. In 4 times under-sampling case, these evaluating values decreased by approximately 10%. This study demonstrates that deep learning-based reconstruction can significantly enhance the accuracy and efficiency of MR thermometry for clinical FUS thermal therapies.