Time series forecasting represents a significant and challenging task across various fields. Recently, methods based on mode decomposition have dominated the forecasting of complex time series because of the advantages of capturing local characteristics and extracting intrinsic modes from data. Unfortunately, most models fail to capture the implied volatilities that contain significant information. To enhance the forecasting of current, rapidly evolving, and volatile time series, we propose a novel decomposition-ensemble paradigm, the VMD-LSTM-GARCH model. The Variational Mode Decomposition algorithm is employed to decompose the time series into K sub-modes. Subsequently, the GARCH model extracts the volatility information from these sub-modes, which serve as the input for the LSTM. The numerical and volatility information of each sub-mode is utilized to train a Long Short-Term Memory network. This network predicts the sub-mode, and then we aggregate the predictions from all sub-modes to produce the output. By integrating econometric and artificial intelligence methods, and taking into account both the numerical and volatility information of the time series, our proposed model demonstrates superior performance in time series forecasting, as evidenced by the significant decrease in MSE, RMSE, and MAPE in our comparative experimental results.